Fekete-Szegö problem for close-to-convex functions with respect to a certain convex function dependent on a real parameter

被引:0
|
作者
Nak Eun Cho
Bogumiła Kowalczyk
Adam Lecko
机构
[1] Pukyong National University,Department of Applied Mathematics
[2] University of Warmia and Mazury,Department of Complex Analysis
来源
Frontiers of Mathematics in China | 2016年 / 11卷
关键词
Fekete-Szegö problem; close-to-convex functions; close-to-convex functions with argument ; close-to-convex functions with respect to a convex function; functions of bounded turning; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
Given α ∈ [0, 1], let hα(z):= z/(1 - αz), z ∈ D:= {z ∈ D: |z| < 1}. An analytic standardly normalized function f in D is called close-to-convex with respect to hα if there exists δ ∈ (-π/2, π/2) such that Re{eiδzf′(z)/hα(z)} > 0, z ∈ D. For the class ℓ (hα) of all close-to-convex functions with respect to hα, the Fekete-Szegö problem is studied.
引用
收藏
页码:1471 / 1500
页数:29
相关论文
共 50 条