Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells

被引:0
|
作者
Nanjun Chen
Ho Hyun Wang
Sun Pyo Kim
Hae Min Kim
Won Hee Lee
Chuan Hu
Joon Yong Bae
Eun Seob Sim
Yong-Chae Chung
Jue-Hyuk Jang
Sung Jong Yoo
Yongbing Zhuang
Young Moo Lee
机构
[1] Hanyang University,Department of Energy Engineering, College of Engineering
[2] Hanyang University,Department of Materials Science and Engineering, College of Engineering
[3] Korea Institute of Science and Technology (KIST),Hydrogen Fuel Cell Research Center
[4] Chinese Academy of Sciences,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Low-cost anion exchange membrane fuel cells have been investigated as a promising alternative to proton exchange membrane fuel cells for the last decade. The major barriers to the viability of anion exchange membrane fuel cells are their unsatisfactory key components—anion exchange ionomers and membranes. Here, we present a series of durable poly(fluorenyl aryl piperidinium) ionomers and membranes where the membranes possess high OH− conductivity of 208 mS cm−1 at 80 °C, low H2 permeability, excellent mechanical properties (84.5 MPa TS), and 2000 h ex-situ durability in 1 M NaOH at 80 °C, while the ionomers have high water vapor permeability and low phenyl adsorption. Based on our rational design of poly(fluorenyl aryl piperidinium) membranes and ionomers, we demonstrate alkaline fuel cell performances of 2.34 W cm−2 in H2-O2 and 1.25 W cm−2 in H2-air (CO2-free) at 80 °C. The present cells can be operated stably under a 0.2 A cm−2 current density for ~200 h.
引用
收藏
相关论文
共 50 条
  • [21] Soluble poly(aryl piperidinium) with extended aromatic segments as anion exchange membranes for alkaline fuel cells and water electrolysis
    Liu, Min
    Hu, Xu
    Hu, Bin
    Liu, Lei
    Li, Nanwen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 642
  • [22] Enhancing conductivity and alkaline stability of poly(aryl piperidinium) anion exchange membrane for fuel cells by grafting side-chain type piperidinium
    Yuan, Wei
    Zheng, Xiufang
    Zhang, Xuedong
    Wang, Jianchuan
    Liao, Qiang
    Wei, Zidong
    JOURNAL OF MEMBRANE SCIENCE, 2025, 717
  • [23] Synthesis of poly N-aryl piperidinium membrane and ionomer for anion exchange membrane fuel cell applications
    Gokulapriyan, Ramasamy
    Kim, Beom Ho
    Vijayapradeep, Subramanian
    Manigandan, Subramani
    Arunkumar, Iyappan
    Yoo, Dong Jin
    JOURNAL OF MEMBRANE SCIENCE, 2024, 700
  • [24] Triptycene Branched Poly(aryl-co-aryl piperidinium) Electrolytes for Alkaline Anion Exchange Membrane Fuel Cells and Water Electrolyzers
    Hu, Chuan
    Kang, Na Yoon
    Kang, Hyun Woo
    Lee, Ju Yeon
    Zhang, Xiaohua
    Lee, Yong Jun
    Jung, Seung Won
    Park, Jong Hyeong
    Kim, Myeong-Geun
    Yoo, Sung Jong
    Lee, So Young
    Park, Chi Hoon
    Lee, Young Moo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (03)
  • [25] A quaternized Poly(aryl piperidinium)/ Quaternary MXene based three-layer membrane for alkaline anion exchange membrane fuel cells
    Zhang, Jiawei
    Ling, Qianjun
    Wang, Qixuan
    Xu, Chenxi
    Wei, Haibing
    Espiritu, Richard
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1 - 6
  • [26] A non-cationic crosslinking strategy to improve the performance of anion exchange membranes based on poly(aryl piperidinium) for fuel cells
    Huang, Jiaqiang
    Yu, Zongxue
    Tang, Junlei
    Wang, Pingquan
    Zhang, Xiuzhu
    Wang, Juan
    Lei, Xianzhang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 674
  • [27] Pyrene containing, highly conductive and robust poly (aryl piperidinium) anion exchange membranes for fuel cell applications
    Javed, Omer
    Gong, Shoutao
    Zhang, Xinli
    Han, Long
    Zhang, Haiyang
    Zhang, Boning
    Jin, Quan
    Yang, Min
    Yan, Xiaoming
    He, Gaohong
    Zhang, Fengxiang
    JOURNAL OF MEMBRANE SCIENCE, 2025, 725
  • [28] The difference of the ionomer-catalyst interfaces for poly(aryl piperidinium) hydroxide exchange membrane fuel cells and proton exchange membrane fuel cells
    Liu, Xuerui
    Wang, Xingdong
    Zhang, Chanyu
    Cai, Yun
    Chen, Bowen
    Xin, Dongyue
    Jin, Xiaoxiao
    Zhu, Wei
    Wippermann, Klaus
    Li, Hui
    Li, Ruiyu
    Zhuang, Zhongbin
    NANO RESEARCH, 2024, 17 (07) : 6102 - 6110
  • [29] Robust and durable poly(aryl-co-aryl piperidinium) reinforced membranes for alkaline membrane fuel cells
    Hu, Chuan
    Park, Jong Hyeong
    Kim, Hae Min
    Wang, Ho Hyun
    Bae, Joon Yong
    Liu, Mei-Ling
    Kang, Na Yoon
    Yoon, Kyoung-seok
    Park, Chang-dae
    Chen, Nanjun
    Lee, Young Moo
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (12) : 6587 - 6595
  • [30] Poly (aryl piperidinium) anion exchange membranes for acid recovery: The effect of backbone structure
    Xu, Li
    Wang, Huimin
    Min, Luofu
    Xu, Wei
    Zhang, Wen
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 312