Graham Higman’s PORC Conjecture

被引:0
作者
Vaughan-Lee M. [1 ]
机构
[1] Christ Church, Oxford
关键词
p-Groups; PORC;
D O I
10.1365/s13291-012-0039-x
中图分类号
学科分类号
摘要
We survey the history of Graham Higman’s PORC conjecture concerning the form of the function f(pn) enumerating the number of groups of order pn. The conjecture is that for a fixed n there is a finite set of polynomials in p, g1(p), g2(p),…,gk(p), and a positive integer N, such that for each prime p, f(pn)=gi(p) for some i (1≤i≤k) with the choice of i depending on the residue class of p modulo N. We describe some properties of a group recently discovered by Marcus du Sautoy which has major implications for the PORC conjecture. © 2012, Deutsche Mathematiker-Vereinigung and Springer Verlag.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 21 条
  • [1] Bagnera G., La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. Mat. Pura Appl., 1, 3, pp. 137-228, (1898)
  • [2] Blackburn S.R., Neumann P.M., Venkataraman G., Enumeration of Finite Groups, 173, (2007)
  • [3] Burnside W., Theory of Groups of Finite Order, (1911)
  • [4] Cole F.N., Glover J.W., On groups whose orders are products of three prime factors, Am. J. Math., 15, pp. 1-4, (1893)
  • [5] du Sautoy M.P.F., Zeta functions and counting finite p-groups, Electron. Res. Announc. Am. Math. Soc., 5, pp. 112-122, (1999)
  • [6] du Sautoy M.P.F., Vaughan-Lee M.R., Non-PORC behaviour of a class of descendant p-groups, J. Algebra
  • [7] Evseev A., Higman’s PORC conjecture for a family of groups, Bull. Lond. Math. Soc., 40, pp. 415-431, (2008)
  • [8] Hall M., The Theory of Groups, (1959)
  • [9] Higman G., Enumerating p-groups. I. Inequalities, Proc. London Math. Soc., 10, 3, pp. 24-30, (1960)
  • [10] Higman G., Enumerating p-groups. II. Problems whose solution is PORC, Proc. London Math. Soc., 10, 3, pp. 566-582, (1960)