Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk

被引:0
作者
Nenghui Kuang
Huantian Xie
机构
[1] Hunan University of Science and Technology,School of Mathematics and Computing Science
[2] Wuhan University,School of Mathematics and Statistics
[3] Linyi University,School of Science
来源
Annals of the Institute of Statistical Mathematics | 2015年 / 67卷
关键词
Maximum likelihood estimator; Sub-fractional Brownian motion; Random walk;
D O I
暂无
中图分类号
学科分类号
摘要
We estimate the drift parameter in a simple linear model driven by sub-fractional Brownian motion. We construct a maximum likelihood estimator (MLE) for the drift parameter by using a random walk approximation of the sub-fractional Brownian motion and study the asymptotic behaviors of the estimator. Simulations confirm the theoretical results and indicate superiority of the new proposed estimator.
引用
收藏
页码:75 / 91
页数:16
相关论文
共 14 条
  • [1] Bertin K.(2011)Drift parameter estimation in fractional diffusions driven by perturbed random walks Statistics and Probability Letters 81 243-249
  • [2] Torres S.(2004)Sub-fractional Brownian motion and its relation to occupation times Statistics and Probability Letters 69 405-419
  • [3] Tudor C. A.(1998)Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion Statistics and Probability Letters 38 263-274
  • [4] Bojdecki T. L. G.(2013)Parametric estimation for sub-fractional Ornstein-Uhlenbeck process Journal of Statistical Planning and Inference 143 663-674
  • [5] Gorostiza L. G.(2008)Parametric estimation for linear stochastic delay differential equations driven by fractional Brownian motion Random Operators and Stochastic Equations 16 27-38
  • [6] Talarczyk A.(2001)Fractional Brownian motion, random walks and binary market models Finance and Stochastics 5 343-355
  • [7] Le Breton A(2008)Parameter estimation for stochastic equations with additive fractional Brownian sheet Statistical Inference for Stochastic Processes 11 221-236
  • [8] Mendy I(2007)Statistical aspects of the fractional stochastic calculus The Annals of Statistics 35 1183-1212
  • [9] Prakasa Rao BLS(undefined)undefined undefined undefined undefined-undefined
  • [10] Sottinen T(undefined)undefined undefined undefined undefined-undefined