Existence of groundstates for Choquard type equations with Hardy–Littlewood–Sobolev critical exponent

被引:0
|
作者
Xiaowei Li
Feizhi Wang
机构
[1] Yantai University,School of Mathematics and Information Sciences
来源
Boundary Value Problems | / 2021卷
关键词
Choquard equation; Nonlocal critical growth; Pohozǎev–Palais–Smale sequence; Hardy–Littlewood–Sobolev inequality;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a class of Choquard equations with Hardy–Littlewood–Sobolev lower or upper critical exponent in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}. We combine an argument of L. Jeanjean and H. Tanaka (see (Proc. Am. Math. Soc. 131:2399–2408, 2003) with a concentration–compactness argument, and then we obtain the existence of ground state solutions, which extends and complements the earlier results.
引用
收藏
相关论文
共 50 条
  • [31] Existence of Ground State Solutions for Choquard Equation with the Upper Critical Exponent
    Abdullah Qadha, Sarah
    Chen, Haibo
    Qadha, Muneera Abdullah
    FRACTAL AND FRACTIONAL, 2023, 7 (12)
  • [32] The existence of positive solutions to the Choquard equation with critical exponent and logarithmic term
    He, Qihan
    He, Yu
    Lv, Juntao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
  • [33] Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent
    Pan, Hui-Lan
    Liu, Jiu
    Tang, Chun-Lei
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (01) : 51 - 59
  • [34] Existence of a Positive Solution for a Class of Choquard Equation with Upper Critical Exponent
    Hui-Lan Pan
    Jiu Liu
    Chun-Lei Tang
    Differential Equations and Dynamical Systems, 2022, 30 : 51 - 59
  • [35] Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth
    Tao, Lulu
    He, Rui
    Liang, Sihua
    Niu, Rui
    AIMS MATHEMATICS, 2022, 8 (02): : 3026 - 3048
  • [36] EXISTENCE AND NONEXISTENCE OF NONTRIVIAL SOLUTIONS FOR CHOQUARD TYPE EQUATIONS
    Wang, Tao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [37] CLASSIFICATION OF SOLUTIONS TO A NONLOCAL EQUATION WITH DOUBLY HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS
    Yang, Minbo
    Zhao, Fukun
    Zhao, Shunneng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (11) : 5209 - 5241
  • [38] Existence and concentrate behavior of ground state solutions for critical Choquard equations
    Li, Gui-Dong
    Li, Yong-Yong
    Tang, Chun-Lei
    Yin, Li-Feng
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 101 - 107
  • [39] FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING UPPER CRITICAL EXPONENT AND GENERAL NONLINEARITY
    Yu, Xue
    Sang, Yanbin
    Han, Zhiling
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (01): : 67 - 86
  • [40] The critical Choquard equations with a Kirchhoff type perturbation in bounded domains
    Duan, Xueliang
    Wu, Xiaofan
    Wei, Gongming
    Yang, Haitao
    APPLICABLE ANALYSIS, 2024, 103 (11) : 1944 - 1962