Maximal regularity for non-autonomous evolution equations governed by forms having less regularity

被引:0
作者
El Maati Ouhabaz
机构
[1] University Bordeaux,Institut de Mathématiques de Bordeaux, CNRS UMR 5251
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
35K90; 35K50; 35K45; 47D06; Maximal regularity; Sesquilinear forms; Non-autonomous evolution equations; Differential operators with boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximal regularity problem for non-autonomous evolution equations 0.1u′(t)+A(t)u(t)=f(t),t∈(0,τ]u(0)=u0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{u'(t) + A(t)\,u(t) = f(t), \quad t \in (0, \tau]}\\ {u(0) = u_0.}\end{array}$$\end{document}Each operator A(t) is associated with a sesquilinear form a(t) on a Hilbert space H. We assume that these forms all have the same domain V. It is proved in Haak and Ouhabaz (Math Ann, doi:10.1007/s00208-015-1199-7, 2015) that if the forms have some regularity with respect to t (e.g., piecewise α-Hölder continuous for some α > ½) then the above problem has maximal Lp-regularity for all u0 in the real-interpolation space (H,D(A(0)))1-1/p,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H, \fancyscript{D}(A(0)))_{1-{1}/{p},p}$$\end{document}. In this paper we prove that the regularity required there can be improved for a class of sesquilinear forms. The forms considered here are such that the difference a(t;.,.) − a(s;.,.) is continuous on a larger space than the common domain V. We give three examples which illustrate our results.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条
  • [41] Maximal Regularity of Holder Type for Abstract Parabolic Evolution Equations
    Yagi, Atsushi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2012, 55 (03): : 405 - 428
  • [42] Maximal regularity for stochastic integral equations
    Desch, Gertrud
    Londen, Stig-Olof
    JOURNAL OF APPLIED ANALYSIS, 2013, 19 (01) : 125 - 140
  • [43] On maximal regularity for a class of evolutionary equations
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (02) : 1368 - 1381
  • [44] Operator splitting for non-autonomous evolution equations
    Batkai, Andras
    Csomos, Petra
    Farkas, Balint
    Nickel, Gregor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (07) : 2163 - 2190
  • [45] Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time
    Prüss, J
    Schnaubelt, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (02) : 405 - 430
  • [46] EVOLUTION FAMILIES IN THE FRAMEWORK OF MAXIMAL REGULARITY
    EL Mennaoui, Omar
    Kharou, Yassine
    Laasri, Hafida
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025, : 782 - 796
  • [47] Maximal Regularity for Perturbed Integral Equations on the Line
    Carlos Lizama
    Rodrigo Ponce
    Integral Equations and Operator Theory, 2012, 74 : 513 - 526
  • [48] Maximal Regularity for Perturbed Integral Equations on the Line
    Lizama, Carlos
    Ponce, Rodrigo
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2012, 74 (04) : 513 - 526
  • [49] The maximal regularity property of abstract integrodifferential equations
    Krol, Sebastian
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (02)
  • [50] The maximal regularity property of abstract integrodifferential equations
    Sebastian Król
    Journal of Evolution Equations, 2023, 23