Maximal regularity for non-autonomous evolution equations governed by forms having less regularity

被引:0
|
作者
El Maati Ouhabaz
机构
[1] University Bordeaux,Institut de Mathématiques de Bordeaux, CNRS UMR 5251
来源
Archiv der Mathematik | 2015年 / 105卷
关键词
35K90; 35K50; 35K45; 47D06; Maximal regularity; Sesquilinear forms; Non-autonomous evolution equations; Differential operators with boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximal regularity problem for non-autonomous evolution equations 0.1u′(t)+A(t)u(t)=f(t),t∈(0,τ]u(0)=u0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{l}{u'(t) + A(t)\,u(t) = f(t), \quad t \in (0, \tau]}\\ {u(0) = u_0.}\end{array}$$\end{document}Each operator A(t) is associated with a sesquilinear form a(t) on a Hilbert space H. We assume that these forms all have the same domain V. It is proved in Haak and Ouhabaz (Math Ann, doi:10.1007/s00208-015-1199-7, 2015) that if the forms have some regularity with respect to t (e.g., piecewise α-Hölder continuous for some α > ½) then the above problem has maximal Lp-regularity for all u0 in the real-interpolation space (H,D(A(0)))1-1/p,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H, \fancyscript{D}(A(0)))_{1-{1}/{p},p}$$\end{document}. In this paper we prove that the regularity required there can be improved for a class of sesquilinear forms. The forms considered here are such that the difference a(t;.,.) − a(s;.,.) is continuous on a larger space than the common domain V. We give three examples which illustrate our results.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条
  • [21] Evolution equations governed by Lipschitz continuous non-autonomous forms
    Ahmed Sani
    Hafida Laasri
    Czechoslovak Mathematical Journal, 2015, 65 : 475 - 491
  • [22] Evolution equations governed by Lipschitz continuous non-autonomous forms
    Sani, Ahmed
    Laasri, Hafida
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (02) : 475 - 491
  • [23] Non-autonomous right and left multiplicative perturbations and maximal regularity
    Achache, Mahdi
    Ouhabaz, El Maati
    STUDIA MATHEMATICA, 2018, 242 (01) : 1 - 29
  • [24] On maximal parabolic regularity for non-autonomous parabolic operators
    Disser, Karoline
    ter Elst, A. F. M.
    Rehberg, Joachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 2039 - 2072
  • [25] Maximal regularity for non-autonomous Robin boundary conditions
    Arendt, Wolfgang
    Monniaux, Sylvie
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1325 - 1340
  • [26] Maximal regularity for local minimizers of non-autonomous functionals
    Hasto, Peter
    Ok, Jihoon
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (04) : 1285 - 1334
  • [27] Maximal regularity for second order non-autonomous Cauchy problems
    Batty, Charles J. K.
    Chill, Ralph
    Srivastava, Sachi
    STUDIA MATHEMATICA, 2008, 189 (03) : 205 - 223
  • [28] On non-autonomous maximal regularity for elliptic operators in divergence form
    Auscher, Pascal
    Egert, Moritz
    ARCHIV DER MATHEMATIK, 2016, 107 (03) : 271 - 284
  • [29] On non-autonomous maximal regularity for elliptic operators in divergence form
    Pascal Auscher
    Moritz Egert
    Archiv der Mathematik, 2016, 107 : 271 - 284
  • [30] MAXIMAL REGULARITY FOR NON-AUTONOMOUS CAUCHY PROBLEMS IN WEIGHTED SPACES
    Mahdi, Achache
    Hossni, Tebbani
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,