Twin-rotor two-input two-output (TITO) aerodynamical system (TRAS) is a highly non-linear system with a cross-coupling effect. The objective of the controller design in TRAS is to track the trajectory of azimuth and pitch angles, reach the desired azimuth and pitch angle positions, and stabilize TRAS in the presence of significant cross-coupling. The coupling effect between the main rotor and tail rotor is a severe issue for the controller design. So, this paper proposes a proportional integral derivative double derivative (PIDD2) controller design for TRAS, first time. Further, the tuning of PIDD2 controller is carried out via a modified grey wolf optimizer (MGWO). Besides, the real-time hardware-in-loop (HIL) implementation of the PIDD2 controller with the TRAS laboratory prototype setup is carried out, first-time. Moreover, It is tested under external disturbances for robustness and effectiveness analyses. In addition, this paper performs both simulations as well as hardware results analyses. These analyses reveal that the experimental results are found to match closely with simulation results. Finally, the efficacy of the proposed control design approach is presented by comparing it with the recently published controldesign schemes.