Randomized Kaczmarz for tensor linear systems

被引:0
作者
Anna Ma
Denali Molitor
机构
[1] University of California,
[2] Irvine,undefined
[3] University of California,undefined
[4] Los Angeles,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Multilinear systems; Randomized Kaczmarz; Tensor product; 65F10; 65F20; 65F25; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
Solving linear systems of equations is a fundamental problem in mathematics. When the linear system is so large that it cannot be loaded into memory at once, iterative methods such as the randomized Kaczmarz method excel. Here, we extend the randomized Kaczmarz method to solve multi-linear (tensor) systems under the tensor–tensor t-product. We present convergence guarantees for tensor randomized Kaczmarz in two ways: using the classical matrix randomized Kaczmarz analysis and taking advantage of the tensor–tensor t-product structure. We demonstrate experimentally that the tensor randomized Kaczmarz method converges faster than traditional randomized Kaczmarz applied to a naively matricized version of the linear system. In addition, we draw connections between the proposed algorithm and a previously known extension of the randomized Kaczmarz algorithm for matrix linear systems.
引用
收藏
页码:171 / 194
页数:23
相关论文
共 75 条
[1]  
Agmon S(1954)The relaxation method for linear inequalities Can. J. Math. 6 382-392
[2]  
Ahn CH(1991)Efficient hybrid finite element-boundary element method for 3-dimensional open-boundary field problems IEEE Trans. Magn. 27 4069-4072
[3]  
Jeong BS(1981)Row-action methods for huge and sparse systems and their applications SIAM Rev. 23 444-466
[4]  
Lee SY(2017)A sampling Kaczmarz–Motzkin algorithm for linear feasibility SIAM J. Sci. Comput. 39 S66-S87
[5]  
Censor Y(2016)Randnla: randomized numerical linear algebra Commun. ACM 59 80-90
[6]  
De Loera JA(1980)Block-iterative methods for consistent and inconsistent linear equations Numer. Math. 35 1-12
[7]  
Haddock J(2015)Randomized iterative methods for linear systems SIAM J. Matrix Anal. Appl. 36 1660-1690
[8]  
Needell D(2019)On Motzkin’s method for inconsistent linear systems BIT 59 387-401
[9]  
Drineas P(2013)Facial recognition using tensor–tensor decompositions SIAM J. Imaging Sci. 6 437-463
[10]  
Mahoney MW(1937)Angenäherte auflösung von systemen linearer gleichungen Bull. Acad. Polonaise Sci. Lett. 35 355-357