The equitable basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}

被引:0
作者
Georgia Benkart
Paul Terwilliger
机构
[1] University of Wisconsin,Department of Mathematics
关键词
Equitable basis; Modular group; Kac–Moody algebra; Cartan matrix; 17B37;
D O I
10.1007/s00209-010-0682-9
中图分类号
学科分类号
摘要
This article contains an investigation of the equitable basis for the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}. Denoting this basis by {x, y, z}, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x,y] = 2x + 2y, \quad [y,z] = 2y + 2z, \quad [z, x] = 2z + 2x.$$\end{document} We determine the group of automorphisms G generated by exp(ad x*), exp(ad y*), exp(ad z*), where {x*, y*, z*} is the basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document} dual to {x, y, z} with respect to the trace form (u, v) = tr(uv) and study the relationship of G to the isometries of the lattices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L={\mathbb Z}x \oplus {\mathbb Z}y\oplus {\mathbb Z}z}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^* ={\mathbb Z}x^*\oplus {\mathbb Z}y^*\oplus {\mathbb Z}z^*}$$\end{document}. The matrix of the trace form is a Cartan matrix of hyperbolic type, and we identify the equitable basis with a set of simple roots of the corresponding Kac–Moody Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document}, so that L is the root lattice and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} L^*}$$\end{document} is the weight lattice of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document}. The orbit G(x) of x coincides with the set of real roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document}. We determine the isotropic roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document} and show that each isotropic root has multiplicity 1. We describe the finite-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}-modules from the point of view of the equitable basis. In the final section, we establish a connection between the Weyl group orbit of the fundamental weights of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} and Pythagorean triples.
引用
收藏
页码:535 / 557
页数:22
相关论文
共 13 条
  • [11] Moody R.V.(undefined) and of SL undefined undefined undefined-undefined
  • [12] Tuba I.(undefined)undefined undefined undefined undefined-undefined
  • [13] Wenzl H.(undefined)undefined undefined undefined undefined-undefined