The equitable basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}

被引:0
作者
Georgia Benkart
Paul Terwilliger
机构
[1] University of Wisconsin,Department of Mathematics
关键词
Equitable basis; Modular group; Kac–Moody algebra; Cartan matrix; 17B37;
D O I
10.1007/s00209-010-0682-9
中图分类号
学科分类号
摘要
This article contains an investigation of the equitable basis for the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}. Denoting this basis by {x, y, z}, we have \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x,y] = 2x + 2y, \quad [y,z] = 2y + 2z, \quad [z, x] = 2z + 2x.$$\end{document} We determine the group of automorphisms G generated by exp(ad x*), exp(ad y*), exp(ad z*), where {x*, y*, z*} is the basis for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document} dual to {x, y, z} with respect to the trace form (u, v) = tr(uv) and study the relationship of G to the isometries of the lattices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L={\mathbb Z}x \oplus {\mathbb Z}y\oplus {\mathbb Z}z}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^* ={\mathbb Z}x^*\oplus {\mathbb Z}y^*\oplus {\mathbb Z}z^*}$$\end{document}. The matrix of the trace form is a Cartan matrix of hyperbolic type, and we identify the equitable basis with a set of simple roots of the corresponding Kac–Moody Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document}, so that L is the root lattice and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2} L^*}$$\end{document} is the weight lattice of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document}. The orbit G(x) of x coincides with the set of real roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document}. We determine the isotropic roots of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak g}$$\end{document} and show that each isotropic root has multiplicity 1. We describe the finite-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{sl}_2}$$\end{document}-modules from the point of view of the equitable basis. In the final section, we establish a connection between the Weyl group orbit of the fundamental weights of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{g}}$$\end{document} and Pythagorean triples.
引用
收藏
页码:535 / 557
页数:22
相关论文
共 13 条
  • [1] Alperin R.C.(1993)The modular tree of Pythagoras Am. Math. Mon. 100 385-386
  • [2] Alperin R.C.(2005)The universal central extension of the three-point Am. Math. Mon. 112 807-816
  • [3] Benkart G.(2007) loop algebra Proc. Am. Math. Soc. 135 1659-1668
  • [4] Terwilliger P.(2007)The tetrahedron algebra and its finite-dimensional irreducible modules Linear Algebra Appl. 422 219-235
  • [5] Hartwig B.(2007)The Tetrahedron algebra, the Onsager algebra, and the J. Algebra 308 840-863
  • [6] Hartwig B.(2006) loop algebra J. Algebra 208 284-301
  • [7] Terwilliger P.(1979)The quantum algebra Adv. Math. 33 144-160
  • [8] Ito T.(2001) and its equitable presentation Pac. J. Math. 197 491-510
  • [9] Terwilliger P.(undefined)Root systems of hyperbolic type undefined undefined undefined-undefined
  • [10] Weng C.(undefined)Representations of the braid group B undefined undefined undefined-undefined