Riemann–Hilbert approach and N-soliton solutions for a new two-component Sasa–Satsuma equation

被引:0
|
作者
Jia Wang
Ting Su
Xianguo Geng
Ruomeng Li
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Henan University of Engineering,College of Science
来源
Nonlinear Dynamics | 2020年 / 101卷
关键词
Riemann–Hilbert approach; Two component Sasa–Satsuma equation; -soliton solution;
D O I
暂无
中图分类号
学科分类号
摘要
A new two-component Sasa–Satsuma equation associated with a 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix spectral problem is proposed by resorting to the zero-curvature equation. Riemann–Hilbert problems are formulated on the basis of spectral analysis of the 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} matrix Lax pair for the two-component Sasa–Satsuma equation, from which zero structures of the Riemann–Hilbert problems are investigated. As applications, N-soliton formulas of the two-component Sasa–Satsuma equation are obtained by solving a particular Riemann–Hilbert problem corresponding to the reflectionless case. Further, the obtained N-soliton formulas are expressed by the ratios of determinants, which are more compact and convenient for symbolic computations. Moreover, the interaction dynamics of the multi-soliton solutions are analyzed and graphically illustrated.
引用
收藏
页码:597 / 609
页数:12
相关论文
共 50 条
  • [1] Riemann-Hilbert approach and N-soliton solutions for a new two-component Sasa-Satsuma equation
    Wang, Jia
    Su, Ting
    Geng, Xianguo
    Li, Ruomeng
    NONLINEAR DYNAMICS, 2020, 101 (01) : 597 - 609
  • [2] Riemann–Hilbert approach and N-soliton solutions of the coupled generalized Sasa–Satsuma equation
    Fan Wu
    Lin Huang
    Nonlinear Dynamics, 2022, 110 : 3617 - 3627
  • [3] Riemann-Hilbert approach and N-soliton solutions for a generalized Sasa-Satsuma equation
    Geng, Xianguo
    Wu, Jianping
    WAVE MOTION, 2016, 60 : 62 - 72
  • [4] Riemann-Hilbert approach and N-soliton solutions of the coupled generalized Sasa-Satsuma equation
    Wu, Fan
    Huang, Lin
    NONLINEAR DYNAMICS, 2022, 110 (04) : 3617 - 3627
  • [5] RIEMANN-HILBERT METHOD FOR THE THREE-COMPONENT SASA-SATSUMA EQUATION AND ITS N-SOLITON SOLUTIONS
    Xu, Siqi
    Li, Ruomeng
    Geng, Xianguo
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (01) : 77 - 103
  • [6] RIEMANN-HILBERT APPROACH AND N-SOLITON SOLUTIONS OF THE TWO-COMPONENT KUNDU-ECKHAUS EQUATION
    Wang, Chunjiang
    Zhang, Jian
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 212 (03) : 1222 - 1236
  • [7] Soliton solutions for a two-component generalized Sasa-Satsuma equation
    Feng, Lian-li
    Zhu, Zuo-nong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (07)
  • [8] Soliton solutions for a two-component generalized Sasa-Satsuma equation
    Lian-li Feng
    Zuo-nong Zhu
    CommunicationsinTheoreticalPhysics, 2023, 75 (07) : 35 - 49
  • [9] Riemann-Hilbert method and N-soliton for two-component Gerdjikov-Ivanov equation
    Zhang, Yongshuai
    Cheng, Yi
    He, Jingsong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 (02) : 210 - 223
  • [10] The Riemann-Hilbert Approach and N-Soliton Solutions of a Four-Component Nonlinear Schrodinger Equation
    Zhou, Xin-Mei
    Tian, Shou-Fu
    Yang, Jin-Jie
    Mao, Jin-Jin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 143 - 163