N-Fold generalized Darboux transformation and semirational solutions for the Gerdjikov-Ivanov equation for the Alfvén waves in a plasma

被引:0
作者
Su-Su Chen
Bo Tian
He-Yuan Tian
Dan-Yu Yang
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Gerdjikov-Ivanov equation; Alfvén waves; Generalized Darboux transformation; Semirational solutions; Asymptotic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Alfvén waves propagating parallel to the ambient magnetic field are modeled via the Gerdjikov-Ivanov equation. With respect to the transverse magnetic field perturbation for such an equation, we derive an N-fold generalized Darboux transformation and some semirational solutions on the constant/periodic background, where N is a positive integer. Such semirational solutions consist of the l-th-order rogue waves, the κ-l-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \kappa -l-r\right) $$\end{document}-th-order nondegenerate breathers and the r-th-order degenerate breathers, where κ=2,3,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa =2,3,\ldots ,N$$\end{document}, l=0,1,2,…,κ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=0,1,2,\ldots ,\kappa -1$$\end{document}, and r=0,2,3,…,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0,2,3,\ldots ,\kappa $$\end{document}. With some conditions, the l-th-order rogue wave is close to the 12(κ-l)(κ+l+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}(\kappa -l)(\kappa +l+1)$$\end{document} elements of the κ-l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \kappa -l\right) $$\end{document}-th-order breathers which locate in the center of the x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} plane, and then the interaction among them forms the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-th-order rogue wave, where x and t denote the space and time coordinates, respectively. Through the asymptotic analysis, we find that the trajectories of the second-order degenerate breathers are the logarithmic curves, and the asymptotic breathers are in good coherence with the corresponding analytic solutions in the far-field region of the x–t plane. Interaction between the second-order nondegenerate breathers and the first-order rogue wave reveals the periodic attraction and repulsion.
引用
收藏
页码:1561 / 1572
页数:11
相关论文
共 126 条
[21]  
Gao YT(2020)-dimensional Sawada-Kotera equation Appl. Math. Lett. 105 1950354-undefined
[22]  
Li LQ(2012)Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics Phys. Rev. E 85 undefined-undefined
[23]  
Jia TT(2017)Nonautonomous matter-wave solitons near the Feshbach resonance Phys. Rev. E 96 undefined-undefined
[24]  
Lan ZZ(2013)Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation Phys. Rev. E 88 undefined-undefined
[25]  
Guo BL(2017)Breather and hybrid solutions for a generalized Nonlinearity 30 undefined-undefined
[26]  
Guo B(1984)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves J. Phys. Soc. Jpn. 53 undefined-undefined
[27]  
Ling L(2020)High-order semi-rational solutions for the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling J. Phys. Soc. Jpn. 89 undefined-undefined
[28]  
Liu QP(1994)Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits Opt. Lett. 19 undefined-undefined
[29]  
Gao XY(2006)Breather solutions of a fourth-order nonlinear Schrödinger equation in the degenerate, soliton, and rogue wave limits Phys. Rev. Lett. 96 undefined-undefined
[30]  
Guo YJ(1983)Rational solitons of wave resonant-interaction models Bulg. J. Phys. 10 undefined-undefined