N-Fold generalized Darboux transformation and semirational solutions for the Gerdjikov-Ivanov equation for the Alfvén waves in a plasma

被引:0
作者
Su-Su Chen
Bo Tian
He-Yuan Tian
Dan-Yu Yang
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
来源
Nonlinear Dynamics | 2022年 / 108卷
关键词
Gerdjikov-Ivanov equation; Alfvén waves; Generalized Darboux transformation; Semirational solutions; Asymptotic analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Alfvén waves propagating parallel to the ambient magnetic field are modeled via the Gerdjikov-Ivanov equation. With respect to the transverse magnetic field perturbation for such an equation, we derive an N-fold generalized Darboux transformation and some semirational solutions on the constant/periodic background, where N is a positive integer. Such semirational solutions consist of the l-th-order rogue waves, the κ-l-r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \kappa -l-r\right) $$\end{document}-th-order nondegenerate breathers and the r-th-order degenerate breathers, where κ=2,3,…,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa =2,3,\ldots ,N$$\end{document}, l=0,1,2,…,κ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l=0,1,2,\ldots ,\kappa -1$$\end{document}, and r=0,2,3,…,κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0,2,3,\ldots ,\kappa $$\end{document}. With some conditions, the l-th-order rogue wave is close to the 12(κ-l)(κ+l+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}(\kappa -l)(\kappa +l+1)$$\end{document} elements of the κ-l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \kappa -l\right) $$\end{document}-th-order breathers which locate in the center of the x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} plane, and then the interaction among them forms the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-th-order rogue wave, where x and t denote the space and time coordinates, respectively. Through the asymptotic analysis, we find that the trajectories of the second-order degenerate breathers are the logarithmic curves, and the asymptotic breathers are in good coherence with the corresponding analytic solutions in the far-field region of the x–t plane. Interaction between the second-order nondegenerate breathers and the first-order rogue wave reveals the periodic attraction and repulsion.
引用
收藏
页码:1561 / 1572
页数:11
相关论文
共 126 条
[1]  
Wazwaz AM(2020)Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients Nonlinear Dyn. 100 3711-3716
[2]  
Xu GQ(2020)Painlevé analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions Phys. Lett. A 384 4311-4315
[3]  
Wazwaz AM(2021)Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation Nonlinear Dyn. 104 1519-1531
[4]  
Wazwaz AM(2021)Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation Nonlinear Dyn. 104 272-3784
[5]  
Wang D(2021)Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrodinger system Appl. Math. Lett. 120 3771-2738
[6]  
Gao YT(2021)Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrodinger equation in an inhomogeneous plasma Chaos Solitons Fract. 148 656-228
[7]  
Yu X(2018)Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma Phys. Plasmas 25 1950376-2040
[8]  
Li LQ(2020)Bilinear form, solitons, breathers and lumps of a Eur. Phys. J. Plus 135 75-2921
[9]  
Jia TT(2020)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics Nonlinear Dyn. 100 2729-621
[10]  
Gao XY(2012)Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger-Boussinesq system in a homogeneous magnetized plasma Phys. Rev. E 85 218-1523