The uniqueness of polynomial crystallographic actions

被引:0
作者
Yves Benoist
Karel Dekimpe
机构
[1] Ecole Normale Supérieure,
[2] 45 rue d'Ulm 75230 Paris,undefined
[3] France (e-mail: Yves.Benoist@ens.fr) ,undefined
[4] Katholieke Universiteit Leuven,undefined
[5] Campus Kortrijk,undefined
[6] B–8500 Kortrijk,undefined
[7] Belgium (e-mail: Karel.Dekimpe@kulak.ac.be) ,undefined
来源
Mathematische Annalen | 2002年 / 322卷
关键词
Polynomial Transformation; Polynomial Action; Crystallographic Action;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Gamma$\end{document} be a polycyclic-by-finite group. It is proved in [8] that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Gamma$\end{document} admits a polynomial action of bounded degree on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^n$\end{document} which is properly discontinuous and such that the quotient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Gamma\backslash \mathbb{R}^n$\end{document} is compact. We prove here that such an action is unique up to conjugation by a polynomial transformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^n$\end{document}.
引用
收藏
页码:563 / 571
页数:8
相关论文
empty
未找到相关数据