Multiple positive solutions for Kirchhoff-type problems in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} involving critical Sobolev exponents

被引:0
作者
Haining Fan
机构
[1] China University of Mining and Technology,School of Sciences
关键词
Multiple positive solutions; Kirchhoff-type problems; Critical Sobolev exponent; Nehari manifold; Ljusternik–Schnirelmann category; 35A15; 35B33; 35J62;
D O I
10.1007/s00033-016-0723-2
中图分类号
学科分类号
摘要
In this paper, we study the following nonlinear problem of Kirchhoff type with critical Sobolev exponent -a+b∫R3|∇u|2dxΔu+u=λf(x)uq-1+g(x)u5,x∈R3,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}-\left(a+b\displaystyle\int\limits_{\mathbb{R}^3}|\nabla u|^2{\rm d}x\right)\Delta u+u=\lambda f(x)u^{q-1}+g(x)u^5,\quad x\in \mathbb{R}^3,\\ u\in H^1(\mathbb{R}^3), \end{array} \right.$$\end{document}where a, b >  0, 4 <  q <  6, and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} is a positive parameter. Under certain assumptions on f(x) and g(x) and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} is small enough, we obtain a relationship between the number of positive solutions and the topology of the global maximum set of g. The Nehari manifold and Ljusternik–Schnirelmann category are the main tools in our study. Moreover, using the Mountain Pass Theorem, we give an existence result about λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda}$$\end{document} large.
引用
收藏
相关论文
共 37 条
  • [1] Brézis H.(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Commun. Pure Appl. Math. 36 437-477
  • [2] Nirenberg L.(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
  • [3] Alves C.O.(2016)Existence and concentration of ground state solutions for a Kirchhoff type problem Electron. J. Differ. Equ. 5 1-18
  • [4] Correa F.J.S.A.(2010)Positive and negative solutions of a class of nonlocal problems Nonlinear Anal. 73 25-30
  • [5] Ma T.F.(2009)Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition Nonlinear Anal. 70 1275-1287
  • [6] Fan H.(2006)Sign-changing solutions of Kirchhoff type problems via invariant sets of descent flow J. Math. Anal. Appl. 317 456-463
  • [7] Yang Y.(2010)Infinitely many radial solutions for Kirchhoff-type problems in J. Math. Anal. Appl. 369 564-574
  • [8] Zhang J.(2015)Multiple positive solutions of degenerate nonlocal problems on unbounded domain Math. Methods Appl. Sci. 38 1282-1291
  • [9] Mao A.(2012)Existence and concentration behavior of positive solutions for a Kirchhoff equation in J. Differ. Equ. 252 1813-1834
  • [10] Zhang Z.(2014)Multiplicity and concentration of positive solutions for a Schrödinger–Kirchhoff-type problem via penalization method ESAIM Control Optim. Calc. Var. 20 389-415