Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model

被引:0
作者
Ju, Xiaowei [1 ,2 ,3 ]
机构
[1] Harbin Engn Univ, Coll Intelligent Syst Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Heilongjiang Univ Sci & Technol, Coll Sci, Harbin 150022, Peoples R China
[3] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Heilongjiang, Peoples R China
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2024年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Generalized diffusive Maginu model; Discrete time delay; Hopf bifurcation; Periodic solution; Turing instability; PERIODIC-SOLUTIONS; STABILITY; SYSTEMS;
D O I
10.1007/s42985-024-00282-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem and the normal form theory, we derive the precise condition to judge the bifurcation direction and the stability of the bifurcating periodic solutions. Also, we deduce the exact condition to determine the Turing instability of the Hopf bifurcating periodic solutions for diffusive system. Numerical simulations are used to support our theoretical analysis.
引用
收藏
页数:21
相关论文
共 16 条