Hybrid reordering strategies for ILU preconditioning of indefinite sparse matrices

被引:2
作者
Lee E.-J. [1 ]
Zhang J. [1 ]
机构
[1] Department of Computer Science, University of Kentucky, 773 Anderson Hall, Lexington
关键词
Indefinite matrix; Preconditioning; Reordering;
D O I
10.1007/BF02896480
中图分类号
学科分类号
摘要
Incomplete LU factorization preconditioning techniques often have difficulty on indefinite sparse matrices. We present hybrid reordering strategies to deal with such matrices, which include new diagonal reorderings that are in conjunction with a symmetric nondecreasing degree algorithm. We first use the diagonal reorderings to efficiently search for entries of single element rows and columns and/or the maximum absolute value to be placed on the diagonal for computing a nonsymmetric permutation. To augment the effectiveness of the diagonal reorderings, a nondecreasing degree algorithm is applied to reduce the amount of fill-in during the ILU factorization. With the reordered matrices, we achieve a noticeable improvement in enhancing the stability of incomplete LU factorizations. Consequently, we reduce the convergence cost of the preconditioned Krylov subspace methods on solving the reordered indefinite matrices. © 2006 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:307 / 316
页数:9
相关论文
共 18 条
[1]  
Benzi M.(2002)Preconditioning techniques for large linear systems: a survey J. Comput. Phys. 182 418-477
[2]  
Benzi M.(2000)Preconditioning highly indefinite and non-symmetric matrices SIAM J. Sci. Comput. 22 1333-1353
[3]  
Haws J. C.(1997)Approximate and incomplete factorizations Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering 4 91-118
[4]  
Tuma M.(1997)Experimental study of ILUpreconditioners for indefinite matrices J. Comput. Appl. Math. 86 387-414
[5]  
Chan T. F.(1981)Algorithm 575: Permutations for zero-free diagonal ACM Trans. Math. Software 7 387-390
[6]  
van der Vorst H. A.(1999)The design and use of algorithms for permuting large entries to the diagonal of sparse matrices SIAM J. Matrix Anal. Appl. 20 889-901
[7]  
Chow E.(2001)On algorithms for permuting large entries to the diagonal of a sparse matrix SIAM J. Matrix Anal. Appl. 22 973-996
[8]  
Saad Y.(1989)A stability analysis of incomplete LU factorization Math. Comput. 47 191-217
[9]  
Duff I. S.(1980)On the problem of unstable pivots in the incomplete LU-conjugate gradient method J. Comput. Phys. 38 114-123
[10]  
Duff I. S.(1994)ILUT: a dual threshold incomplete LU factorization Numer. Linear Algebra Appl. 14 387-402