Human myofibroblasts increase the arrhythmogenic potential of human induced pluripotent stem cell-derived cardiomyocytes

被引:7
|
作者
Johnson, Robert D. [1 ]
Lei, Ming [2 ]
Mcvey, John H. [1 ]
Camelliti, Patrizia [1 ]
机构
[1] Univ Surrey, Sch Psychol, Guildford, England
[2] Univ Oxford, Dept Pharmacol, Oxford, England
关键词
Cardiac cell therapy; Myocardial infarction; Heterocellular communication; Connexin-43; Interleukin-6; Fibroblasts; Crosstalk; Paracrine; SARCOPLASMIC-RETICULUM; CARDIAC FIBROBLASTS; IMPULSE CONDUCTION; HEART-FAILURE; MESSENGER-RNA; EXPRESSION; TRANSPLANTATION; MATURATION; MYOCYTES; MODEL;
D O I
10.1007/s00018-023-04924-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to remuscularize infarcted hearts but their arrhythmogenicity remains an obstacle to safe transplantation. Myofibroblasts are the predominant cell-type in the infarcted myocardium but their impact on transplanted hiPSC-CMs remains poorly defined. Here, we investigate the effect of myofibroblasts on hiPSC-CMs electrophysiology and Ca2+ handling using optical mapping of advanced human cell coculture systems mimicking cell-cell interaction modalities. Human myofibroblasts altered the electrophysiology and Ca2+ handling of hiPSC-CMs and downregulated mRNAs encoding voltage channels (KV4.3, KV11.1 and Kir6.2) and SERCA2a calcium pump. Interleukin-6 was elevated in the presence of myofibroblasts and direct stimulation of hiPSC-CMs with exogenous interleukin-6 recapitulated the paracrine effects of myofibroblasts. Blocking interleukin-6 reduced the effects of myofibroblasts only in the absence of physical contact between cell-types. Myofibroblast-specific connexin43 knockdown reduced functional changes in contact cocultures only when combined with interleukin-6 blockade. This provides the first in-depth investigation into how human myofibroblasts modulate hiPSC-CMs function, identifying interleukin-6 and connexin43 as paracrine- and contact-mediators respectively, and highlighting their potential as targets for reducing arrhythmic risk in cardiac cell therapy.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Calcium Homeostasis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Lee, Yee-Ki
    Ng, Kwong-Man
    Lai, Wing-Hon
    Chan, Yau-Chi
    Lau, Yee-Man
    Lian, Qizhou
    Tse, Hung-Fat
    Siu, Chung-Wah
    STEM CELL REVIEWS AND REPORTS, 2011, 7 (04) : 976 - 986
  • [2] Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes
    Cyganek, Lukas
    Tiburcy, Malte
    Sekeres, Karolina
    Gerstenberg, Kathleen
    Bohnenberger, Hanibal
    Lenz, Christof
    Henze, Sarah
    Stauske, Michael
    Salinas, Gabriela
    Zimmermann, Wolfram-Hubertus
    Hasenfuss, Gerd
    Guan, Kaomei
    JCI INSIGHT, 2018, 3 (12):
  • [3] Recent advances in regulating the proliferation or maturation of human-induced pluripotent stem cell-derived cardiomyocytes
    Yang, Hao
    Yang, Yuan
    Kiskin, Fedir N.
    Shen, Mengcheng
    Zhang, Joe Z.
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [4] Strategies for Improving the Maturity of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
    Tu, Chengyi
    Chao, Benjamin S.
    Wu, Joseph C.
    CIRCULATION RESEARCH, 2018, 123 (05) : 512 - 514
  • [5] Simulation of cardiac arrhythmias in human induced pluripotent stem cell-derived cardiomyocytes
    Bommer, Thea
    Knierim, Maria
    Unsoeld, Julia
    Riedl, Dominic
    Stengel, Laura
    Paulus, Michael
    Koertl, Thomas
    Liaw, Norman
    Maier, Lars S.
    Streckfuss-Boemeke, Katrin
    Sossalla, Samuel
    Pabel, Steffen
    PLOS ONE, 2024, 19 (09):
  • [6] Modeling incomplete penetrance in arrhythmogenic cardiomyopathy by human induced pluripotent stem cell derived cardiomyocytes
    De Bortoli, Marzia
    Meraviglia, Viviana
    Mackova, Katarina
    Frommelt, Laura S.
    Konig, Eva
    Rainer, Johannes
    Volani, Chiara
    Benzoni, Patrizia
    Schlittler, Maja
    Cattelan, Giada
    Motta, Benedetta M.
    Volpato, Claudia
    Rauhe, Werner
    Barbuti, Andrea
    Zacchigna, Serena
    Pramstaller, Peter P.
    Rossini, Alessandra
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 1759 - 1773
  • [7] Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Insights Into Molecular, Cellular, and Functional Phenotypes
    Karakikes, Ioannis
    Ameen, Mohamed
    Termglinchan, Vittavat
    Wu, Joseph C.
    CIRCULATION RESEARCH, 2015, 117 (01) : 80 - 88
  • [8] Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes
    Dell'Era, Patrizia
    Benzoni, Patrizia
    Crescini, Elisabetta
    Valle, Matteo
    Xia, Er
    Consiglio, Antonella
    Memo, Maurizio
    WORLD JOURNAL OF STEM CELLS, 2015, 7 (02): : 329 - 342
  • [9] Cyclophosphamide arrhythmogenicitytesting using human-induced pluripotent stem cell-derived cardiomyocytes
    Podgurskaya, A. D.
    Slotvitsky, M. M.
    Tsvelaya, V. A.
    Frolova, S. R.
    Romanova, S. G.
    Balashov, V. A.
    Agladze, K. I.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity
    Sharma, Arun
    McKeithan, Wesley L.
    Serrano, Ricardo
    Kitani, Tomoya
    Burridge, Paul W.
    del Alamo, Juan C.
    Mercola, Mark
    Wu, Joseph C.
    NATURE PROTOCOLS, 2018, 13 (12) : 3018 - 3041