Tauberian theorems for statistically (C, 1, 1) summable double sequences

被引:0
作者
Zerrin Önder
İbrahim Çanak
机构
[1] Ege University,Department of Mathematics
来源
Positivity | 2019年 / 23卷
关键词
Double sequences; Convergence in Pringsheim’s sense; summability; Statistical convergence; Slowly decreasing sequences; Slowly oscillating sequences; Statistically slowly decreasing sequences; Statistically slowly oscillating sequences; One-sided Tauberian conditions; Two-sided Tauberian conditions; Tauberian theorems; 40A05; 40A35; 40E05; 40G05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain some Tauberian conditions in terms of slow oscillation and slow decreasing in certain senses, under which convergence of a double sequence in Pringsheim’s sense follows from its statistical (C, 1, 1) summability.
引用
收藏
页码:891 / 919
页数:28
相关论文
共 25 条
[1]  
Hardy GH(1904)On the convergence of certain multiple series Proc. Lond. Math. Soc. 2 124-128
[2]  
Agnew RP(1934)On summability of multiple sequences Am. J. Math. 1 62-68
[3]  
Knopp K(1939)Limitierungs-Umkehrsätze für Doppelfolgen Math. Z 45 573-589
[4]  
Tauber A(1897)Ein Satz aus der Theorie der unendlichen Reihen Monatsh Math. Phys. 8 273-277
[5]  
Móricz F(1994)Tauberian theorems for Cesàro summable double sequences Stud. Math. 110 83-96
[6]  
Totur Ü(2015)Classical Tauberian theorems for the An. Ştiinţ. Univ. Al. I. Cuza. Iaşi. Mat. (N.S.). 61 401-414
[7]  
Fast H(1952) summability method Colloq. Math. 2 241-244
[8]  
Schoenberg IJ(1959)Sur la convergence statistique Am. Math. Mon. 66 361-375
[9]  
Tripathy BC(2003)The integrability of certain functions and related summability methods Tamkang J. Math. 34 231-237
[10]  
Mursaleen M(2003)Statistically convergent double sequences J. Math. Anal. Appl. 288 223-231