An improved error bound for linear complementarity problems for B-matrices

被引:0
|
作者
Lei Gao
Chaoqian Li
机构
[1] Baoji University of Arts and Sciences,School of Mathematics and Information Science
[2] Yunnan University,School of Mathematics and Statistics
来源
Journal of Inequalities and Applications | / 2017卷
关键词
error bound; linear complementarity problem; -matrix; 90C33; 60G50; 65F35;
D O I
暂无
中图分类号
学科分类号
摘要
A new error bound for the linear complementarity problem when the matrix involved is a B-matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7):1071-1075, 2009) are provided.
引用
收藏
相关论文
共 50 条
  • [41] Superfluous matrices in linear complementarity
    Sridhar, R
    MATHEMATICAL PROGRAMMING, 1995, 71 (02) : 195 - 206
  • [42] Exact computation of an error bound for the balanced linear complementarity problem with unique solution
    Jean-Pierre Dussault
    Jean Charles Gilbert
    Mathematical Programming, 2023, 199 : 1221 - 1238
  • [43] Construction and decomposition of scaling matrices for Sk-SDD matrices and their application to linear complementarity problems
    Zeng, Wenlong
    Wang, Qing-Wen
    Liu, Jianzhou
    NUMERICAL ALGORITHMS, 2025,
  • [44] Exact computation of an error bound for the balanced linear complementarity problem with unique solution
    Dussault, Jean-Pierre
    Gilbert, Jean Charles
    MATHEMATICAL PROGRAMMING, 2023, 199 (1-2) : 1221 - 1238
  • [45] Error estimation for nonlinear complementarity problems via linear systems with interval
    Alefeld, Goetz
    Wang, Zhengyu
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (3-4) : 243 - 267
  • [46] The continuity of the solution map in linear complementarity problems with underlying k-matrices
    Huynh The Phung
    Tran Thien Tin
    OPTIMIZATION, 2015, 64 (04) : 839 - 851
  • [47] Equivalence of the Generalized Vertical Block Linear Complementarity Problems and Linear Complementarity Problems
    Bidushi Chakraborty
    Sudarshan Nanda
    Mahendra Prasad Biswal
    Mediterranean Journal of Mathematics, 2005, 2 : 291 - 299
  • [48] Equivalence of the generalized vertical block linear complementarity problems and linear complementarity problems
    Chakraborty, Bidushi
    Nanda, Sudarshan
    Biswal, Mahendra Prasad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (03) : 291 - 299
  • [49] Improved error bounds for linear systems with H-matrices
    Minamihata, Atsushi
    Sekine, Kouta
    Ogita, Takeshi
    Rump, Siegfried M.
    Oishi, Shin'ichi
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2015, 6 (03): : 377 - 382
  • [50] A note on the MSMAOR method for linear complementarity problems
    Wu, Shi-Liang
    Li, Cui-Xia
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04) : 795 - 800