KAM for PDEs

被引:14
作者
Berti M. [1 ]
机构
[1] SISSA, Via Bonomea 265, Trieste
关键词
Partial Differential Equations (PDEs); Quasi-periodic Solutions; Kuksin; Higher Space Dimensions; Birkhoff Normal Form;
D O I
10.1007/s40574-016-0067-z
中图分类号
学科分类号
摘要
In the last years much progress has been achieved in the theory of quasi-periodic solutions of PDEs, that we shall call in a broad sense "KAM theory for PDEs". Many new tools and ideas have been developed in this field (and are in current progress) establishing new links with other areas of dynamical systems (like normal forms) and PDE analysis (like micro-local analysis). We provide an overview to the state of the art in KAM theory for PDEs. © 2016 Unione Matematica Italiana.
引用
收藏
页码:115 / 142
页数:27
相关论文
共 94 条
[1]  
Alazard T., Baldi P., Gravity capillary standing water waves, Arch. Ration. Mech. Anal., 217, 3, pp. 741-830, (2015)
[2]  
Baldi P., Berti M., Montalto R., KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Annalen, 359, pp. 471-536, (2014)
[3]  
Baldi P., Berti M., Montalto R., KAM for quasi-linear KdV, C. R. Acad. Sci. Paris, Ser. i, 352, pp. 603-607, (2014)
[4]  
Baldi P., Berti M., Montalto R., KAM for autonomous quasi-linear perturbations of KdV, Ann. I. H Poincaré, Analyse Nonlineaire
[5]  
Baldi P., Berti M., Montalto R., KAM for autonomous quasi-linear perturbations of mKdV, Boll. Unione Mat. Ital.
[6]  
Bambusi D., Berti M., Magistrelli E., Degenerate KAM theory for partial differential equations, J. Differ. Equ., 250, 8, pp. 3379-3397, (2011)
[7]  
Bambusi D., Delort J.-M., Grebert B., Szeftel J., Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Commun. Pure Appl. Math., 60, 11, pp. 1665-1690, (2007)
[8]  
Bambusi D., Grebert B., Birkhoff normal form for PDE's with tame modulus, Duke Math. J., 135, 3, pp. 507-567, (2006)
[9]  
Berti M., Nonlinear oscillations of Hamiltonian PDEs, Progr. Nonlinear Differential Equation Appl., 74, pp. 1-181, (2008)
[10]  
Berti M., Biasco L., Branching of Cantor manifolds of elliptic tori and applications to PDEs, Commun. Math. Phys, 305, 3, pp. 741-796, (2011)