Time Evolution of an Infinitely Extended Vlasov System with Singular Mutual Interaction

被引:0
作者
Silvia Caprino
Guido Cavallaro
Carlo Marchioro
机构
[1] Università Tor Vergata,Dipartimento di Matematica
[2] SAPIENZA Università di Roma,Dipartimento di Matematica
来源
Journal of Statistical Physics | 2016年 / 162卷
关键词
Vlasov equation; Infinitely extended plasma; Singular interaction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the time evolution of an infinitely extended system in the mean field approximation, governed by the Vlasov equation. This system is confined in an unbounded cylinder by an external force singular on the border. The mutual interaction is assumed singular at short distance as 1/rα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/r^\alpha $$\end{document} with α<2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha < 2/3$$\end{document} (or α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <1$$\end{document} in case of an external Lorentz force) and with a short range. The initial density is assumed bounded. Differently from studies which assume initial data compact in space and/or in velocities, here we consider a system having infinite mass and an exponential bound on the velocities, according to the Maxwell–Boltzmann law.
引用
收藏
页码:426 / 456
页数:30
相关论文
共 89 条
[1]  
Alexander R(1976)Time evolution for infinitely many hard spheres Commun. Math. Phys. 49 217-232
[2]  
Bahn C(1999)Nonequilibrium dynamics of infinite particle systems with infinite range interactions J. Math. Phys. 40 4337-4358
[3]  
Park YM(1991)Global classical solutions of a periodic Vlasov-Poisson system in three dimensions C.R. Acad. Sci. Paris 313 411-416
[4]  
Yoo HJ(1977)The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles Commun. Math. Phys. 56 101-113
[5]  
Batt J(2002)On the long time behavior of infinitely extended systems of particles interacting via kac potentials J. Stat. Phys. 108 317-339
[6]  
Rein G(2006)On the dynamics of infinitely many particles with magnetic confinement Boll. Unione Mat. Ital. Ser. VIII Sez. B 9 371-395
[7]  
Braun W(2012)Time evolution of two dimensional systems with infinitely many particles mutually interacting via very singular forces J. Stat. Phys. 108 317-339
[8]  
Hepp K(2013)Dynamics of an infinitely extended hard core system Rep. Math. Phys. 72 369-377
[9]  
Buttà P(2015)Mathematical models of viscous friction Lect. Notes Math. 2135 1-132
[10]  
Caglioti E(2001)The Vlasov equation with infinite mass Arch. Ration. Mech. Anal. 159 85-108