On the Algebraizability of the Implicational Fragment of Abelian Logic

被引:0
作者
Sam Butchart
Susan Rogerson
机构
[1] Swinburne University of Technology,Department of Philosophy and Cultural Inquiry
[2] Monash University,Philosophy Department
来源
Studia Logica | 2014年 / 102卷
关键词
Abelian logic; Algebraizability; Order algebraizability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the implicational fragment of Abelian logic A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\sf A}_{\rightarrow}}}$$\end{document}. We show that although the Abelian groups provide an semantics for the set of theorems of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\sf A}_{\rightarrow}}}$$\end{document} they do not for the associated consequence relation. We then show that the consequence relation is not algebraizable in the sense of Blok and Pigozzi (Mem Am Math Soc 77, 1989). In the second part of the paper, we investigate an extension of A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\sf A}_{\rightarrow}}}$$\end{document} in the same language and having the same set of theorems and show that this new consequence relation is algebraizable with the Abelian groups as its equivalent algebraic semantics. Finally, we show that although A→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\sf A}_{\rightarrow}}}$$\end{document} is not algebraizable, it is order-algebraizable in the sense of Raftery (Ann Pure Appl Log 164:251–283, 2013).
引用
收藏
页码:981 / 1001
页数:20
相关论文
共 17 条
  • [1] Blok W. J.(2006)Equivalence of consequence operations Studia Logica 83 91-110
  • [2] Jónsson B.(2006)A note on monothetic BCI Notre Dame Journal of Formal Logic 47 541-544
  • [3] Butchart S.(1987)BCI-algebras and Abelian groups Mathematica Japonica 32 693-696
  • [4] Kowalski T.(2004)The logic of equilibrium and Abelian lattice ordered groups Archive for Mathematical Logic 43 141-158
  • [5] Daoji M.(2006)Variations on a theme of Curry Notre Dame Journal of Formal Logic 47 101-131
  • [6] Galli A.(1976)Axiomatizations of logics with values in groups London Math Society 14 193-199
  • [7] Lewin A.(1994)The finite model property for BCK and BCW Studia Logica 53 107-118
  • [8] Sagastume M.(2001)Logic and groups Logic and Logical Philosophy 9 109-128
  • [9] Humberstone L.(2008)Abelian logic and the logics of pointed lattice-ordered varieties Logica Universalis 2 209-233
  • [10] Kalman J. A.(2013)Order algebraizable logics Annals of Pure and Applied Logic 164 251-283