On the dual minimum distance and minimum weight of codes from a quotient of the Hermitian curve

被引:0
作者
Edoardo Ballico
Alberto Ravagnani
机构
[1] University of Trento,Department of Mathematics
[2] Université de Neuchâtel,Institut de Mathématiques
来源
Applicable Algebra in Engineering, Communication and Computing | 2013年 / 24卷
关键词
Quotient of Hermitian curve; Goppa code; Minimum distance; Minimum-weight codeword; Evaluation code; 14G15; 14H99; 14N05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study evaluation codes arising from plane quotients of the Hermitian curve, defined by affine equations of the form yq+y=xm,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^q+y=x^m,\,q$$\end{document} being a prime power and m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} a positive integer which divides q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document}. The dual minimum distance and minimum weight of such codes are studied from a geometric point of view. In many cases we completely describe the minimum-weight codewords of their dual codes through a geometric characterization of the supports, and provide their number. Finally, we apply our results to describe Goppa codes of classical interest on such curves.
引用
收藏
页码:343 / 354
页数:11
相关论文
共 33 条
[1]  
Bernardi A(2011)Computing symmetric rank for symmetric tensors J. Symbolic. Comput. 46 34-53
[2]  
Gimigliano A(2010)Dimension of two-point codes on the quotient of Hermitian curves IEEE Int. Conf. Comput. Sci. Inf. Technol. 6 163-168
[3]  
Idà M(2006)Codes from a quotient of the Hermitian curve attaining the designed distance Congr. Numerantium 182 161-170
[4]  
Chen Q(2012)The dual minimum distance of arbitrary dimensional algebraic-geometric codes J. Algebra 350 84-107
[5]  
Li C(1986)Weierstrass points on certain non-classical curves Arch. Math. 46 315-322
[6]  
Pei D(2005)Toward the determination of the minimum distance of two-point codes on a Hermitian curve Des. Codes Cryptogr. 37 11-132
[7]  
Coleman MA(2006)The two-point codes on a Hermitian curve with the designed minimum distance Des. Codes Cryptogr. 38 55-81
[8]  
Drake N(2006)The two-point codes with the designed distance on a Hermitian curve in even characteristic Des. Codes Cryptogr. 39 375-386
[9]  
Matthews GL(2006)The complete determination of the minimum distance of two-point codes on a Hermitian curve Des. Codes Cryptogr. 40 5-24
[10]  
Couvreur A(2013)Hermitian codes from higher degree places J. Pure Appl. Algebra 217 2371-2381