Parabolic Gradient Estimates and Harnack Inequalities for a Nonlinear Equation Under The Ricci Flow

被引:0
作者
Liangdi Zhang
机构
[1] Zhejiang University,Center of Mathematical Sciences
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2021年 / 52卷
关键词
Parabolic gradient estimate; Nonlinear parabolic equation; Ricci flow; 35B45; 35K55; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
When the Riemannian metric evolves under the Ricci flow, we investigate parabolic gradient estimates (Li–Yau’s type and J. Li’s type) for positive solutions to the nonlinear parabolic equation (Δ-∂t)u=(p+1)|∇u|2u+qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta -\partial _t)u=(p+1)\frac{|\nabla u|^2}{u}+qu$$\end{document} on the underlying manifold. Based on these gradient estimates, we derive associated Harnack inequalities, respectively.
引用
收藏
页码:77 / 99
页数:22
相关论文
共 50 条
[11]   Harnack estimates for a heat-type equation under the Ricci flow [J].
Li, Yi ;
Zhu, Xiaorui .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) :3270-3301
[12]   Gradient Estimates and Harnack Inequality for a Nonlinear Parabolic Equation on Complete Manifolds [J].
Wu J. ;
Yang Y.-H. .
Communications in Mathematics and Statistics, 2013, 1 (4) :437-464
[13]   Some gradient estimates and Harnack inequalities for nonlinear parabolic equations on Riemannian manifolds [J].
Wang, Wen ;
Zhang, Pan .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (11-12) :1905-1917
[16]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[17]   Upper bounds of Hessian matrix and gradient estimates of positive solutions to the nonlinear parabolic equation along Ricci flow [J].
Wang, Wen .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
[18]   DIFFERENTIAL HARNACK INEQUALITIES FOR NONLINEAR HEAT EQUATIONS WITH POTENTIALS UNDER THE RICCI FLOW [J].
Wu, Jia-Yong .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 257 (01) :199-218
[19]   SOME GENERAL GRADIENT ESTIMATES FOR TWO NONLINEAR PARABOLIC EQUATIONS ALONG RICCI FLOW [J].
Wang, Wen ;
Zhou, Hui ;
Xie, Rulong ;
Yin, Songting .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02) :337-376
[20]   Differential Harnack Inequalities Under a Coupled Ricci Flow [J].
Wang, Lin Feng .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (04) :343-360