Parabolic Gradient Estimates and Harnack Inequalities for a Nonlinear Equation Under The Ricci Flow

被引:0
|
作者
Liangdi Zhang
机构
[1] Zhejiang University,Center of Mathematical Sciences
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2021年 / 52卷
关键词
Parabolic gradient estimate; Nonlinear parabolic equation; Ricci flow; 35B45; 35K55; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
When the Riemannian metric evolves under the Ricci flow, we investigate parabolic gradient estimates (Li–Yau’s type and J. Li’s type) for positive solutions to the nonlinear parabolic equation (Δ-∂t)u=(p+1)|∇u|2u+qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta -\partial _t)u=(p+1)\frac{|\nabla u|^2}{u}+qu$$\end{document} on the underlying manifold. Based on these gradient estimates, we derive associated Harnack inequalities, respectively.
引用
收藏
页码:77 / 99
页数:22
相关论文
共 50 条