On A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities and inequalities for certain operator matrices

被引:0
作者
Fuad Kittaneh
Satyajit Sahoo
机构
[1] The University of Jordan,Department of Mathematics
[2] Utkal University,P.G. Department of Mathematics
关键词
-numerical radius; Positive operator; Semi-inner product; Inequality; Circulant operator matrix; Tridiagonal operator matrix;
D O I
10.1007/s43034-021-00137-6
中图分类号
学科分类号
摘要
The main goal of this article is to establish several new A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities for n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} circulant, skew circulant, imaginary circulant, imaginary skew circulant, tridiagonal, and anti-tridiagonal operator matrices, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document} is the n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} diagonal operator matrix whose diagonal entries are positive bounded operator A. Some special cases of our results lead to the results of earlier works in the literature, which shows that our results are more general. Further, some pinching type A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius inequalities for n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} block operator matrices are given. Some equality conditions are also given. We also provide a concluding section, which may lead to several new problems in this area.
引用
收藏
相关论文
共 80 条
[1]  
Arias ML(2008)Partial isometries in semi-Hilbertian spaces Linear Algebra Appl. 428 1460-1475
[2]  
Corach G(2006)A norm compression inequality for block partitioned positive semidefinite matrices Linear Algebra Appl. 413 155-176
[3]  
Gonzalez MC(2018)Upper bounds for numerical radius inequalities involving off-diagonal operator matrices Ann. Funct. Anal. 9 297-309
[4]  
Audenaert K(2008)Norm equalities and inequalities for operator matrices Linear Algebra Appl. 429 57-67
[5]  
Bakherad M(2020)New norm equalities and inequalities for certain operator matrices Math. Inequal. Appl. 23 1041-1050
[6]  
Shebrawi K(1990)Norm inequalities for partitioned operators and an application Math. Ann. 287 719-726
[7]  
Bani-Domi F(2002)Pinchings and norms of block scaled triangular matrices Linear Multilinear Algebra 50 15-21
[8]  
Kittaneh F(2020)Some improvements of numerical radius inequalities of operators and operator matrices Linear Multilinear Algebra 36 143-157
[9]  
Bani-Domi M(2020)Refinements of A-numerical radius inequalities and its applications Adv. Oper. Theory 24 479-516
[10]  
Kittaneh R(2020)-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications Bull. Iran. Math. Soc. 17 413-415