Holomorphic Foliations Tangent to Levi-Flat Subsets

被引:0
作者
Jane Bretas
Arturo Fernández-Pérez
Rogério Mol
机构
[1] Centro Federal de Educação Tecnológica de Minas Gerais,Departamento de Matemática
[2] Universidade Federal de Minas Gerais,Departamento de Matemática
来源
The Journal of Geometric Analysis | 2019年 / 29卷
关键词
Holomorphic foliations; CR-manifolds; Levi-flat varieties; Primary 32S65; Secondary 32V40;
D O I
暂无
中图分类号
学科分类号
摘要
An irreducible real analytic subvariety H of real dimension 2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2n +1$$\end{document} in a complex manifold M is a Levi-flat subset if its regular part carries a complex foliation of dimension n. Locally, a germ of real analytic Levi-flat subset is contained in a germ of irreducible complex variety Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\imath }$$\end{document} of dimension n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}, called intrinsic complexification, which can be globalized to a neighborhood of H in M provided H is a coherent analytic subvariety. In this case, a singular holomorphic foliation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} of dimension n in M that is tangent to H is also tangent to Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\imath }$$\end{document}. In this paper, we prove integration results of local and global nature for the restriction to Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\imath }$$\end{document} of a singular holomorphic foliation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} tangent to a real analytic Levi-flat subset H. From a local viewpoint, if n=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1$$\end{document} and Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\imath }$$\end{document} has an isolated singularity, then F|Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}|_{H^{\imath }}$$\end{document} has a meromorphic first integral. From a global perspective, when M=PN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M = \mathbb {P}^N$$\end{document} and H is coherent and of low codimension, Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\imath }$$\end{document} extends to an algebraic variety. In this case, F|Hı\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}|_{H^{\imath }}$$\end{document} has a rational first integral provided infinitely many leaves of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}$$\end{document} in H are algebraic.
引用
收藏
页码:1407 / 1427
页数:20
相关论文
共 16 条
  • [1] Brunella M(2007)Singular Levi-flat hypersurfaces and codimension one foliations Ann. Sc. Norm. Super. Pisa Cl. Sci. 6 661-672
  • [2] Brunella M(2012)Some remarks on meromorphic first integrals Enseign. Math. 58 315-324
  • [3] Cartan E(1933)Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes Ann. Mat. Pura Appl. 11 17-90
  • [4] Cartan H(1957)Variétés analytiques réelles et variétés analytiques complexes Bull. Soc. Math. France 85 77-99
  • [5] Cerveau D(2011)Neto. Local Levi-flat hypersurfaces invariants by a codimension one holomorphic foliation Amer. J. Math. 133 677-716
  • [6] Lins A(1969)On meromorphic maps of algebraic varieties Ann. Math. 2 391-403
  • [7] Chow WL(2013)On Levi-flat hypersurfaces with generic real singular set J. Geom. Anal. 23 2020-2033
  • [8] Fernández-Pérez A(2000)À propos d’un théorème de J.-P. Jouanolou concernant les feuilles fermées des feuilletages holomorphes Rend. Circ. Mat. Palermo 49 175-180
  • [9] Ghys E(1989)Integrals for holomorphic foliations with singularities having all leaves compact Ann. Inst. Fourier 39 451-458
  • [10] Gómez-Mont X(1964)Resolution of singularities of an algebraic variety over a field of characteristic zero I. Ann. Math. 79 109-203