Low-frequency noise in monodisperse platinum nanostructures near the percolation threshold

被引:0
作者
S. L. Rumyantsev
M. E. Levinshteĭn
S. A. Gurevich
V. M. Kozhevin
D. A. Yavsin
M. S. Shur
N. Pala
A. Khanna
机构
[1] Russian Academy of Sciences,Ioffe Physicotechnical Institute
[2] Rensselaer Polytechnic Institute,Department of Electrical, Computer, and Systems Engineering
[3] Sensor Electronic Technology,undefined
[4] Inc.,undefined
来源
Physics of the Solid State | 2006年 / 48卷
关键词
61.46.Df; 73.63.-b; 73.50.Td;
D O I
暂无
中图分类号
学科分类号
摘要
The percolation threshold p0 ≈ 0.6 is determined for monodisperse platinum nanostructures with 1.8-nm metallic particles deposited in a monolayer onto an insulating substrate through laser electrodispersion. It is shown that, in the “metallic” state (for p > p0), both the magnitude of the noise and its temperature dependence are close to those of pure metallic Pt layers. The frequency dependence of the normalized noise power spectral density is described by the relationship SI/I2 ∼ 1/fγ with the exponent γ close to unity. For current densities j ≥ 107−108 A/cm2, the noise power spectral density SI increases more rapidly with a further increase in the current as compared to I2 because of the current generating excess defects. For p < p0, the dependence of the conductivity σ on the temperature is adequately described by the standard relationship σ ∼ exp[−(T0/T)1/2]. The normalized noise power spectral density SI/I2 exceeds the corresponding value for a quasi-metallic structure by many orders of magnitude. The noise power spectral density SI is approximately proportional to the square of the current only for very low currents and increases steeply with a further increase in the current.
引用
收藏
页码:2194 / 2198
页数:4
相关论文
共 45 条
[1]  
Rusponi S.(2005)undefined Appl. Phys. Lett. 87 162-undefined
[2]  
Weiss N.(2005)undefined J. Appl. Phys. 98 074307-undefined
[3]  
Cren T.(1994)undefined Phys. Low-Dimens. Struct. 11/12 9-undefined
[4]  
Epple M.(1998)undefined Appl. Phys. Lett. 72 61-undefined
[5]  
Brune H.(2000)undefined J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom. 18 1402-undefined
[6]  
Bose A.(1985)undefined Phys. Rev. Lett. 55 2212-undefined
[7]  
Basu S.(2005)undefined Pis’ma Zh. Éksp. Teor. Fiz. 81 287-undefined
[8]  
Banerjee S.(2003)undefined Usp. Fiz. Nauk 173 465-undefined
[9]  
Chakravorty D.(1990)undefined Fiz. Tekh. Poluprovodn. (Leningrad) 24 1807-undefined
[10]  
Vyshenski S. V.(1981)undefined Rev. Mod. Phys. 53 497-undefined