Kinetic Equation for Quantum Fermi Gases and the Analytic Solution of Boundary Value Problems

被引:0
|
作者
A. V. Latyshev
A. A. Yushkanov
机构
[1] Moscow Pedagogical University,
来源
Theoretical and Mathematical Physics | 2003年 / 134卷
关键词
boundary value problem; kinetic equation; dilute Fermi gas; distribution function; generalized Smoluchowski problem; temperature jumps; concentration jumps; chemical potential jumps;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a kinetic equation describing the behavior of quantum Fermi gases with the molecule collision frequency proportional to the molecule velocity. We obtain an analytic solution of the generalized Smoluchowski problem with the temperature gradient and the mass flow velocity specified away from the surface. We find exact formulas for jumps of the gas temperature, concentration, and chemical potential. Analysis of limit cases demonstrates a transition of the quantum Fermi gas to the classical or degenerate gas.
引用
收藏
页码:271 / 284
页数:13
相关论文
共 50 条
  • [1] Kinetic equation for quantum Fermi gases and the analytic solution of boundary value problems
    Latyshev, AV
    Yushkanov, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 134 (02) : 271 - 284
  • [2] Boundary Problems for a Quantum Fermi Gas
    A. V. Latyshev
    A. A. Yushkanov
    Theoretical and Mathematical Physics, 2001, 129 : 1717 - 1726
  • [3] Boundary problems for a quantum Fermi gas
    Latyshev, AV
    Yushkanov, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (03) : 1717 - 1726
  • [4] Numerical solution of the boundary value problems for the parabolic equation with involution
    Ashyralyev, A.
    Ashyralyyev, C.
    Ahmed, A. M. S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 109 (01): : 48 - 57
  • [5] The method of singular equations in boundary value problems in kinetic theory
    Latyshev, AV
    Yushkanov, AA
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 143 (03) : 854 - 869
  • [6] The Method of Singular Equations in Boundary Value Problems in Kinetic Theory
    A. V. Latyshev
    A. A. Yushkanov
    Theoretical and Mathematical Physics, 2005, 143 : 854 - 869
  • [7] Boundary Value Problems for the Helmholtz Equation in an Octant
    Frank-Olme Speck
    Ernst Peter Stephan
    Integral Equations and Operator Theory, 2008, 62 : 269 - 300
  • [8] Boundary value problems for the steady Boltzmann equation
    Illner, R
    Struckmeier, J
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (3-4) : 427 - 454
  • [9] Boundary value problems for the Helmholtz equation in an octant
    Speck, Frank-Olme
    Stephan, Ernst Peter
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (02) : 269 - 300
  • [10] Semi-analytic method for boundary value problems of ODES
    Chen, CC
    Lu, TT
    8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS, AND INFORMATICS, VOL XVI, PROCEEDINGS, 2004, : 476 - 481