Convergence and Optimization Results for a History-Dependent Variational Problem

被引:0
作者
Mircea Sofonea
Andaluzia Matei
机构
[1] Université de Perpignan Via Domitia,Laboratoire de Mathématiques et Physique
[2] University of Craiova,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2020年 / 169卷
关键词
History-dependent operator; Mixed variational problem; Lagrange multiplier; Mosco convergence; Pointwise convergence; Optimization problem; Viscoelastic material; Frictional contact; 35M86; 35M87; 49J40; 74M15; 74M10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a mixed variational problem in real Hilbert spaces, defined on the unbounded interval of time [0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,+\infty)$\end{document} and governed by a history-dependent operator. We state the unique solvability of the problem, which follows from a general existence and uniqueness result obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2015). Then, we state and prove a general convergence result. The proof is based on arguments of monotonicity, compactness, lower semicontinuity and Mosco convergence. Finally, we consider a general optimization problem for which we prove the existence of minimizers. The mathematical tools developed in this paper are useful in the analysis of a large class of nonlinear boundary value problems which, in a weak formulation, lead to history-dependent mixed variational problems. To provide an example, we illustrate our abstract results in the study of a frictional contact problem for viscoelastic materials with long memory.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 47 条
  • [11] Sofonea M.(2013)Weak solvability via Lagrange multipliers for two frictional contact models Ann. Univ. Buchar. Math. Ser. 4 179-191
  • [12] Hild P.(1968)Convergence of convex sets and of solutions of variational inequalities Adv. Math. 3 510-585
  • [13] Renard Y.(2019)Optimal control of variational-hemivariational inequalities Appl. Math. Optim. 79 621-646
  • [14] Hüeber S.(2008)A fixed point result with applications in the study of viscoplastic frictionless contact problems Commun. Pure Appl. Anal. 7 645-658
  • [15] Matei A.(2011)History-dependent quasivariational inequalities arising in contact mechanics Eur. J. Appl. Math. 22 471-491
  • [16] Wohlmuth B.(2015)History-dependent mixed variational problems in contact mechanics J. Glob. Optim. 61 591-614
  • [17] Hüeber S.(2019)Optimal control for a class of mixed variational problem Z. Angew. Math. Phys. 70 86-103
  • [18] Wohlmuth B.(2019)Optimization problems for a viscoelastic frictional contact problem with unilateral constraints Nonlinear Anal. Ser. B Real World Appl. 50 364-384
  • [19] Hüeber S.(2019)On the optimal control of variational-hemivariational inequalities J. Math. Anal. Appl. 475 undefined-undefined
  • [20] Matei A.(2019)Generalized penalty method for elliptic variational-hemivariational inequalities Appl. Math. Optim. undefined undefined-undefined