Convergence and Optimization Results for a History-Dependent Variational Problem

被引:0
|
作者
Mircea Sofonea
Andaluzia Matei
机构
[1] Université de Perpignan Via Domitia,Laboratoire de Mathématiques et Physique
[2] University of Craiova,Department of Mathematics
来源
关键词
History-dependent operator; Mixed variational problem; Lagrange multiplier; Mosco convergence; Pointwise convergence; Optimization problem; Viscoelastic material; Frictional contact; 35M86; 35M87; 49J40; 74M15; 74M10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a mixed variational problem in real Hilbert spaces, defined on the unbounded interval of time [0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,+\infty)$\end{document} and governed by a history-dependent operator. We state the unique solvability of the problem, which follows from a general existence and uniqueness result obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2015). Then, we state and prove a general convergence result. The proof is based on arguments of monotonicity, compactness, lower semicontinuity and Mosco convergence. Finally, we consider a general optimization problem for which we prove the existence of minimizers. The mathematical tools developed in this paper are useful in the analysis of a large class of nonlinear boundary value problems which, in a weak formulation, lead to history-dependent mixed variational problems. To provide an example, we illustrate our abstract results in the study of a frictional contact problem for viscoelastic materials with long memory.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 50 条
  • [1] Convergence and Optimization Results for a History-Dependent Variational Problem
    Sofonea, Mircea
    Matei, Andaluzia
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 157 - 182
  • [2] Convergence Results for History-Dependent Variational Inequalities
    Sofonea, Mircea
    Tarzia, Domingo A.
    AXIOMS, 2024, 13 (05)
  • [3] Tykhonov triples and convergence results for history-dependent variational inequalities
    Sofonea, Mircea
    INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS AND NUMERICAL METHODS (ICAMNM 2020), 3RD EDITION, 2020, 34
  • [4] Convergence of solutions to history-dependent variational-hemivariational inequalities
    Xiao, Yi-bin
    Sofonea, Mircea
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (07):
  • [5] Well-Posedness and Convergence Results for History-Dependent Inclusions
    Sofonea, Mircea
    Tarzia, Domingo A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2025, 46 (01) : 45 - 67
  • [6] Convergence results for primal and dual history-dependent quasivariational inequalities
    Sofonea, Mircea
    Benraouda, Ahlem
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (02) : 471 - 494
  • [7] Penalization of history-dependent variational inequalities
    Sofonea, M.
    Patrulescu, F.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2014, 25 : 155 - 176
  • [8] A convergence result for history-dependent quasivariational inequalities
    Benraouda, Ahlem
    Sofonea, Mircea
    APPLICABLE ANALYSIS, 2017, 96 (15) : 2635 - 2651
  • [9] Differential History-Dependent Variational-Hemivariational Inequality with Application to a Dynamic Contact Problem
    Abderrahmane Oultou
    Zakaria Faiz
    Othmane Baiz
    Hicham Benaissa
    Acta Applicandae Mathematicae, 2024, 189
  • [10] Differential History-Dependent Variational-Hemivariational Inequality with Application to a Dynamic Contact Problem
    Oultou, Abderrahmane
    Faiz, Zakaria
    Baiz, Othmane
    Benaissa, Hicham
    ACTA APPLICANDAE MATHEMATICAE, 2024, 189 (01)