Convergence and Optimization Results for a History-Dependent Variational Problem

被引:0
作者
Mircea Sofonea
Andaluzia Matei
机构
[1] Université de Perpignan Via Domitia,Laboratoire de Mathématiques et Physique
[2] University of Craiova,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2020年 / 169卷
关键词
History-dependent operator; Mixed variational problem; Lagrange multiplier; Mosco convergence; Pointwise convergence; Optimization problem; Viscoelastic material; Frictional contact; 35M86; 35M87; 49J40; 74M15; 74M10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a mixed variational problem in real Hilbert spaces, defined on the unbounded interval of time [0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,+\infty)$\end{document} and governed by a history-dependent operator. We state the unique solvability of the problem, which follows from a general existence and uniqueness result obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2015). Then, we state and prove a general convergence result. The proof is based on arguments of monotonicity, compactness, lower semicontinuity and Mosco convergence. Finally, we consider a general optimization problem for which we prove the existence of minimizers. The mathematical tools developed in this paper are useful in the analysis of a large class of nonlinear boundary value problems which, in a weak formulation, lead to history-dependent mixed variational problems. To provide an example, we illustrate our abstract results in the study of a frictional contact problem for viscoelastic materials with long memory.
引用
收藏
页码:157 / 182
页数:25
相关论文
共 47 条
  • [1] Amdouni S.(2012)A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies Modél. Math. Anal. Numér. 46 813-839
  • [2] Hild P.(2012)Analysis of quasistatic viscoplastic contact problems with normal compliance Q. J. Mech. Appl. Math. 65 555-579
  • [3] Lleras V.(2014)On the behavior of the solution of a viscoplastic contact problem Q. Appl. Math. 72 625-647
  • [4] Moakher M.(2010)A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics Numer. Math. 115 101-129
  • [5] Renard Y.(2007)Efficient algorithms for problems with friction SIAM J. Sci. Comput. 29 70-92
  • [6] Barboteu M.(2005)An optimal a priori error estimate for nonlinear multibody contact problems SIAM J. Numer. Anal. 43 156-173
  • [7] Matei A.(2005)A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity Bull. Math. Soc. Math. Roum. 48 209-232
  • [8] Sofonea M.(2010)Contact problems for nonlinearly elastic materials: weak solvability involving dual Lagrange multipliers ANZIAM J. 52 160-178
  • [9] Barboteu M.(2010)Weak solvability for a class of contact problems Ann. Acad. Rom. Sci. Ser. Math. Appl. 2 25-44
  • [10] Matei A.(2011)Weak solutions for contact problems involving viscoelastic materials with long memory Math. Mech. Solids 16 393-405