A fractional Ambrosetti-Prodi type problem in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^N$$\end{document}

被引:0
作者
Romildo N. de Lima
César E. Torres Ledesma
Alânnio B. Nóbrega
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
[2] Universidad Nacional de Trujillo,Instituto de Investigación en Matemáticas, Facultad de Ciencias Físicas y Matemáticas
关键词
Comparison principles; Degree theory; Topological methods; Fractional Laplacian; 35B51; 47H11; 35A16; 45J05;
D O I
10.1007/s41808-022-00201-9
中图分类号
学科分类号
摘要
In this paper we deal with the existence and non-existence of solutions for the following Ambrosetti-Prodi type problem P(-Δ)su=P(x)(g(u)+f(x))inRN,u∈Ds(RN),lim|x|→+∞u(x)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lcl} (-\Delta )^s u=P(x)\Big ( g(u)+f(x)\Big ) \text{ in } \mathbb {R}^N,\\ u \in D^{s}(\mathbb R^N),\ \lim _{|x|\rightarrow +\infty }u(x)=0, \end{array} \right. \end{aligned}$$\end{document}where N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N > 2s$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1)$$\end{document}, P∈C(RN,R+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\in C(\mathbb R^N,\mathbb R^+)$$\end{document}, f∈C1,σ(RN)∩L∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C^{1,\sigma }(\mathbb R^N)\cap L^{\infty }(\mathbb R^N)$$\end{document}, g∈C1,σ(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in C^{1,\sigma }(\mathbb R)$$\end{document} and (-Δ)su\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^su$$\end{document} is the fractional Laplacian. The main tools used are the sub-supersolution method and Leray-Schauder topological degree theory.
引用
收藏
页码:355 / 387
页数:32
相关论文
共 36 条
  • [1] Alves CO(2016)Existence and concentration of solution for a class of fractional elliptic equation in Calc. Var. Part. Differ. Equ. 55 47-2144
  • [2] Miyagaki OH(2018) via penalization method Math. Nachrich. 291 2125-845
  • [3] Alves CO(2023)Bifurcation properties for a class of fractional Laplacian equations in J. Fixed Point Theory Appl. 25 12-451
  • [4] de Lima RN(2018)On an Ambrosetti-Prodi type problem in Proc. Edinb. Math. Soc. 61 825-2062
  • [5] Nóbrega AB(2019)Existence of a solution for a non-local problem in Anal. Appl. 17 425-374
  • [6] Alves CO(2017) via bifurcation theory Ann. Mat. Pura Appl. (4) 196 2043-1132
  • [7] de Lima RN(2018)Existence of heteroclinic solutions for a class of problems involving the fractional Laplacian Adv. Nonlinear Anal. 7 365-246
  • [8] Nóbrega AB(2020)Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method Nonlinear Anal. 195 39-2144
  • [9] Alves CO(2022)Zero mass case for a fractional Berestycki-Lions-type problem Rend. Circ. Mat. Palermo (2) 71 1107-53
  • [10] de Lima RN(1972)Concentration phenomena for a class of fractional Kirchhoff equations in Ann. Mat. Pura Appl. 93 231-1260