Mid-wavelength focal plane arrays infrared detector based on type-II InAs/GaSb superlattice

被引:0
作者
Y. Q. Lv
L. X. Zhang
J. J. Si
Z. Y Peng
L. Zhang
X. C. Cao
X. F. Zhang
J. X. Ding
X. B. Zhu
G. S. Yao
X. L. Zhang
Z. C. Niu
机构
[1] Luoyang Optoelectro Technology Development Center,Material School
[2] Northwestern Polytechnical University,State Key Laboratory of Superlattices and Microstructure
[3] Institute of Semiconductors,undefined
[4] Chinese Academy of Sciences,undefined
来源
Optical and Quantum Electronics | 2015年 / 47卷
关键词
Mid-wavelength; InAs/GaSb; Superlattice; Infrared detector; Focal plane arrays;
D O I
暂无
中图分类号
学科分类号
摘要
A mid-wavelength 128×128\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$128 \times 128$$\end{document} infrared focal plane arrays based on InAs/GaSb type-II superlattice was presented in this work. Superlattice materials were grown on GaSb substrates using MBE technology, which was confirmed by XRD, TEM and AFM analyses. Absorber structure for mid-wavelength detector was designed to be 8 ML InAs/8 ML GaSb. The pixel of the detector had a conventional PIN structure with a size of 50μm×50μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50\,\upmu \hbox {m}\times 50\,\upmu \hbox {m}$$\end{document}. The device fabrication process consisted of mesa etching, side-wall passivation, metallization, and flip-chip hybridization with readout integrated circuit, epoxy backfill, lap, and polish. The dark current I–V curve was measured from 77 K up to 297 K. The responsivity spectra, photoluminescence peak wavelength and blackbody current responsivity were measured at 77 K. The detector had a cut-off wavelength of 4.8μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.8\,\upmu \hbox {m}$$\end{document}, photoluminescence peak wavelength of 4.4μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.4\,\upmu \hbox {m}$$\end{document}, peak detectivity of 7.1×1011cmHz1/2W-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.1\times 10^{11}\,\hbox {cm}\,\hbox {Hz}^{1/2}\,\hbox {W}^{-1}$$\end{document}, quantum efficiency of 50 %. The PIN diode may reach a typical value of R0A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {R}_{0}\hbox {A}$$\end{document} of 5.0×105Ωcm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times 10^{5}\Omega \,\hbox {cm}^{2}$$\end{document}. Pixel operability of the detector was more than 98 %, the non-uniformity was 4.3 %, and the mean NETD value was lower than 20 mK. Concept proof of infrared imaging was also demonstrated with the focal plane array at 77 K.
引用
收藏
页码:1731 / 1738
页数:7
相关论文
共 60 条
[1]  
Ashuach Y(2010)Investigation of InAs/GaSb-based superlattices by diffraction methods Nucl. Instrum. Methods Phys. Res. B 268 231-235
[2]  
Kauffmann Y(2011)Temperature dependence performances of InAs/GaSb superlattice photodiode Infrared Phys. Technol. 54 258-262
[3]  
Lakin E(2013)Optimization for mid-wavelength InSb infrared focal plane arrays under front-side illumination Opt. Quantum Electron. 45 673-679
[4]  
Zolotoyabko E(2011)A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density Hydrogen plasma modification Appl. Phys. Lett. 99 091101-591
[5]  
Grossman S(2013)Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays IEEE J. Sel. Top. Quantum Electron. 19 4100107-242
[6]  
Klin O(2014)Performance limits of the mid-wave InAsSb/AlAsSb nBn HOT infrared detector Opt. Quantum Electron. 46 581-496
[7]  
Weiss E(2010)Type-II superlattices: the Fraunhofer perspective Proc. SPIE 7660 76601G-1711
[8]  
Cervera C(2011)InAs/GaSb superlattice technology Infrared Phys. Technol. 54 237-133
[9]  
Jaworowicz K(2012)Role of beryllium doping in strain changes in II-type InAs/GaSb superlattice investigated by high resolution X-raydiffraction method Appl. Phys. A 108 491-undefined
[10]  
Aït-Kaci H(1994)InAs/GaSb infrared photovoltaic detector at 77 K Electron. Lett. 30 1710-undefined