Lefschetz fibrations and Torelli groups

被引:0
作者
R. İnanç Baykur
Dan Margalit
机构
[1] University of Massachusetts,Department of Mathematics and Statistics
[2] Georgia Institute of Technology,School of Mathematics
来源
Geometriae Dedicata | 2015年 / 177卷
关键词
Lefschetz fibration; Surface bundle; Holomorphic fibration; Torelli group; Johnson’s filtration;
D O I
暂无
中图分类号
学科分类号
摘要
For each g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 3$$\end{document} and h≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h \ge 2$$\end{document}, we explicitly construct (1) fiber sum indecomposable relatively minimal genus g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} Lefschetz fibrations over genus h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} surfaces whose monodromies lie in the Torelli group, (2) genus g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} Lefschetz fibrations over genus h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} surfaces that are not fiber sums of holomorphic ones, and (3) fiber sum indecomposable genus g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} surface bundles over genus h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} surfaces whose monodromies are in the Torelli group (provided g≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 4$$\end{document}). The last result amounts to finding explicit irreducible embeddings of surface groups into Torelli groups; in fact we find such embeddings into arbitrary terms of the Johnson filtration.
引用
收藏
页码:275 / 291
页数:16
相关论文
共 28 条
[1]  
Baykur RI(2012)Non-holomorphic surface bundles and Lefschetz fibrations Math. Res. Lett. 19 567-574
[2]  
Baykur RI(2013)Sections of surface bundles and Lefschetz fibrations Trans. Am. Math. Soc. 365 5999-6016
[3]  
Korkmaz M(2013)Indecomposable surface bundles over surfaces J. Topol. Anal. 5 161-181
[4]  
Monden N(2010)The dimension of the Torelli group J. Am. Math. Soc. 23 61-105
[5]  
Baykur RI(2012)The geometry of right-angled Artin subgroups of mapping class groups Groups Geom. Dyn. 6 249-278
[6]  
Margalit D(2001)Bounded cohomology and non-uniform perfection of mapping class groups Invent. Math. 144 169-175
[7]  
Bestvina M(2000)Meyer’s signature cocycle and hyperelliptic fibrations Math. Ann. 316 237-257
[8]  
Bux K-U(1985)The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves Topology 24 113-126
[9]  
Margalit D(1980)On the handlebody decomposition associated to a Lefschetz fibration Pac. J. Math. 89 89-104
[10]  
Clay MT(2008)Co-contractions of graphs and right-angled Artin groups Algebr. Geom. Topol. 8 849-868