Saddle solutions of nonlinear elliptic equations involving the p-Laplacian

被引:0
作者
Zhuoran Du
Zheng Zhou
Baishun Lai
机构
[1] Hunan University,College of Mathematics and Econometrics
[2] Xiamen University of Technology,Department of Mathematics and Physics
[3] Henan University,Institute of Contemporary Mathematics, Henan University School of Mathematics and Information Science
来源
Nonlinear Differential Equations and Applications NoDEA | 2011年 / 18卷
关键词
35J60; 35J70; 35J20; 34D20; 34C37; -Laplacian; Saddle solutions; Variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of saddle solutions of nonlinear elliptic equation involving the p-Laplacian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ -\Delta_{p}u=f(u) \quad \text{in}\,\,R^n, $$\end{document}where p > 2, n := 2m ≥ 2p. We also get a pointwise estimate of the saddle solutions.
引用
收藏
页码:101 / 114
页数:13
相关论文
共 39 条
[1]  
Alama S.(1997)Stationary layered solutions in Calc. Var. Partial Differ. Equ. 5 359-390
[2]  
Bronsard L.(2001) for an Allen–Cahn system with multiple well potential Acta Appl. Math. 65 9-33
[3]  
Gui C.(2007)On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property Adv. Differ. Equ. 12 361-380
[4]  
Alberti G.(2000)Saddle-type solutions for a class of semilinear elliptic equations J. Am. Math. Soc. 13 725-739
[5]  
Ambrosio L.(1997)Entire solutions of semilinear elliptic equations in Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 69-84
[6]  
Cabré X.(1995) and a conjecture of De Giorgi Comm. Pure Appl. Math. 48 1-12
[7]  
Alessio F.(1994)Further qualitative properties for elliptic equations in unbounded domains Comm. Pure Appl. Math. 47 1457-1473
[8]  
Calamai A.(1992)Uniform convergence of a singular perturbation problem Z. Angew Math. Phys. 43 984-998
[9]  
Montecchiari P.(2002)A gradient bound for entire solutions of quasilinear equations and its consequences Calc. Var. Partial Differ. Equ. 15 451-491
[10]  
Ambrosio L.(1983)Saddle solutions of the bistable diffusion equation Nonlin. Anal. T.M.A. 7 827-850