Three parameter Transmuted Rayleigh distribution with application to Reliability data

被引:0
作者
Muhammad Shuaib Khan
Robert King
Irene Lena Hudson
机构
[1] University of Newcastle,School of Mathematical and Physical Sciences
来源
Journal of Statistical Theory and Applications | 2016年 / 15卷 / 3期
关键词
2P-Rayleigh distribution; weighted Rayleigh distribution; moment estimation; order statistics; maximum likelihood estimation; 90B25; 62N05;
D O I
10.2991/jsta.2016.15.3.9
中图分类号
学科分类号
摘要
This research introduces the three parameter transmuted Rayleigh distribution with an application to fatigue fracture data. Using the quadratic rank transmutation map method proposed by Shaw et al. [25] we develop the three parameter transmuted Rayleigh distribution. This research also introduces the new class of weighted Rayleigh distribution by using Azzalini [2] method. Some structural properties of the new distribution are derived such as moments, incomplete moments, probability weighted moments, moment generating function, entropies, mean deviation and the kth moment of order statistics. The parameters of the proposed model are estimated using the maximum likelihood estimation and obtain the observed information matrix. The potentiality of the proposed model is illustrated using fatigue fracture data.
引用
收藏
页码:296 / 312
页数:16
相关论文
共 50 条
[31]   On the Poisson transmuted Ailamujia distribution with applications to dispersed and skewed count data [J].
Adetunji, Abiodun Ademola ;
Sabri, Shamsul Rijal Muhammed .
JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2023, 26 (04) :929-943
[32]   A New Rayleigh Distribution: Properties and Estimation Based on Progressive Type-II Censored Data with an Application [J].
Algarni, Ali ;
Almarashi, Abdullah M. .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01) :379-396
[33]   Improved Methods for Distribution Identification and Regression Parameter Estimation in a Satellite Reliability Application [J].
Grile, Travis M. ;
Kabban, Christine Schubert ;
Bettinger, Robert A. .
IEEE TRANSACTIONS ON RELIABILITY, 2025, 74 (02) :2792-2804
[34]   Inference based on partly interval censored data from a two-parameter Rayleigh distribution [J].
Al-Mosawi, Riyadh Rustam ;
Dey, Sanku .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (12) :2527-2550
[35]   The Length-Biased Weibull-Rayleigh Distribution for Application to Hydrological Data [J].
Chaito, Tanachot ;
Khamkong, Manad .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (13) :3253-3265
[36]   A Review of the Rayleigh Distribution: Properties, Estimation & Application to COVID-19 Data [J].
Anis, M. Z. ;
Okorie, I. E. ;
Ahsanullah, M. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (01)
[37]   Estimation of Stress Strength Reliability for Three-Parameter Weibull Distribution Using Jaya Algorithm [J].
Raikar, Saurabh Laximan ;
Gaonkar, Rajesh Suresh Prabhu .
INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES, 2025, 10 (05) :1218-1231
[38]   RELIABILITY ESTIMATION OF STRESS-STRENGTH MODEL USING THREE PARAMETER GENERALIZED LINDLEY DISTRIBUTION [J].
Deepthi, K. S. ;
Chacko, V. M. .
ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 65 (01) :69-88
[39]   Estimation for the three-parameter lognormal distribution based on progressively censored data [J].
Basak, Prasanta ;
Basak, Indrani ;
Balakrishnan, N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) :3580-3592
[40]   DISCRETE WEIBULL-RAYLEIGH DISTRIBUTION Properties and Parameter Estimations [J].
Ma, Hai-Jing ;
Yan, Zai-Zai .
THERMAL SCIENCE, 2022, 26 (03) :2627-2636