Global solutions to a chemotaxis model with consumption of chemoattractant

被引:0
作者
Liangchen Wang
Chunlai Mu
Xuegang Hu
机构
[1] Chongqing University of Posts and Telecommunications,College of Sciences
[2] Chongqing University,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Chemotaxis; Global existence; Boundedness; 92C17; 35K55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the following chemotaxis system ut=∇·(D(u)∇u)-∇·(S(u)∇v),x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{llll}u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v),\quad &x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad &x\in\Omega,\quad t>0,\end{array} \right.$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset \mathbb{R}^n}$$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geq2}$$\end{document}), not necessarily being convex. There are some constants cD>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_D > 0}$$\end{document}, cS>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_S > 0}$$\end{document}, m∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in\mathbb{R}}$$\end{document} and q∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\in\mathbb{R}}$$\end{document} such that D(u)≥cD(u+1)m-1andS(u)≤cS(u+1)q-1forallu≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(u) \geq c_D(u+1)^{m-1} \quad\text{and} \quad S(u)\leq c_S(u+1)^{q-1}\quad for all \,\,\,u\geq0.$$\end{document}If q<m+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < m+\frac{n+2}{2n}}$$\end{document}, it is shown that the model possesses a unique global classical solution which is uniformly bounded; if q<m2+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < \frac{m}{2}+\frac{n+2}{2n}}$$\end{document}, the global existence of solution is established.
引用
收藏
相关论文
共 78 条
  • [31] Suen A.(2010)Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity Math. Nachr. 283 1664-1673
  • [32] Winkler M.(2013)Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system J. Math. Pures Appl. 100 748-767
  • [33] Xue C.(2012)Global large-data solutions in a chemotaxis-(Navier-) Stokes system modeling cellular swimming in fluid drops Commun. Partial Differ. Equ. 37 319-352
  • [34] Lorz A.(2014)Stabilization in a two-dimensional chemotaxis-Navier-Stokes system Arch. Ration. Mech. Anal. 211 455-487
  • [35] Liu J.G.(2015)Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity Calc. Var. 54 3789-3828
  • [36] Lorz A.(2015)Boundedness in a quasilinear fully parabolic Keller–Segel system with logistic source Z. Angew. Math. Phys. 66 2473-2484
  • [37] Nirenberg L.(2014)Global well posedness for the two dimensional incompressible Chemotaxis-Navier-Stokes equations SIAM J. Math. Anal. 46 3078-3105
  • [38] Tao Y.(undefined)undefined undefined undefined undefined-undefined
  • [39] Wang Z.A.(undefined)undefined undefined undefined undefined-undefined
  • [40] Tao Y.(undefined)undefined undefined undefined undefined-undefined