Global solutions to a chemotaxis model with consumption of chemoattractant

被引:0
作者
Liangchen Wang
Chunlai Mu
Xuegang Hu
机构
[1] Chongqing University of Posts and Telecommunications,College of Sciences
[2] Chongqing University,College of Mathematics and Statistics
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
Chemotaxis; Global existence; Boundedness; 92C17; 35K55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the following chemotaxis system ut=∇·(D(u)∇u)-∇·(S(u)∇v),x∈Ω,t>0,vt=Δv-uv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ \begin{array}{llll}u_t=\nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v),\quad &x\in \Omega,\quad t>0,\\ v_t=\Delta v-uv,\quad &x\in\Omega,\quad t>0,\end{array} \right.$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset \mathbb{R}^n}$$\end{document} (n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\geq2}$$\end{document}), not necessarily being convex. There are some constants cD>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_D > 0}$$\end{document}, cS>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${c_S > 0}$$\end{document}, m∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m\in\mathbb{R}}$$\end{document} and q∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\in\mathbb{R}}$$\end{document} such that D(u)≥cD(u+1)m-1andS(u)≤cS(u+1)q-1forallu≥0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(u) \geq c_D(u+1)^{m-1} \quad\text{and} \quad S(u)\leq c_S(u+1)^{q-1}\quad for all \,\,\,u\geq0.$$\end{document}If q<m+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < m+\frac{n+2}{2n}}$$\end{document}, it is shown that the model possesses a unique global classical solution which is uniformly bounded; if q<m2+n+22n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q < \frac{m}{2}+\frac{n+2}{2n}}$$\end{document}, the global existence of solution is established.
引用
收藏
相关论文
共 78 条
  • [1] Cieślak T.(2014)Finite-time blowup in a supercritical quasilinear parabolic–parabolic Keller–Segel system in dimension 2 Acta Appl. Math. 129 135-146
  • [2] Stinner C.(2015)New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models J. Differ. Equ. 258 2080-2113
  • [3] Cieślak T.(2013)Existence of smooth solutions to coupled chemotaxis-fluid equations Discrete Contin. Dyn. Syst. A 33 2271-2297
  • [4] Stinner C.(2014)Global existence and temporal decay in Keller–Segel models coupled to fluid equations Commun. Partial Differ. Equ. 39 1205-1235
  • [5] Chae M.(2010)Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior Discrete Contin. Dyn. Syst. Ser. A 28 1437-1453
  • [6] Kang K.(2010)Global solutions to the coupled chemotaxis-fluid equations Commun. Partial Differ. Equ. 35 1635-1673
  • [7] Lee J.(2014)A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion Int. Math. Res. Not. 2014 1833-1852
  • [8] Chae M.(2009)A user’s guide to PDE models for chemotaxis J. Math. Biol. 58 183-217
  • [9] Kang K.(2005)Boundedness vs. blow-up in a chemotaxis system J. Differ. Equ. 215 52-107
  • [10] Lee J.(2014)Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains J. Differ. Equ. 256 2993-3010