Effects of Decreasing Mitochondrial Volume on the Regulation of the Permeability Transition Pore

被引:0
作者
Véronique Nogueira
Anne Devin
Ludivine Walter
Michel Rigoulet
Xavier Leverve
Eric Fontaine
机构
[1] UniversitéJ. Fourier,INSERM E
[2] Université Bordeaux II,0221 Bioénergétique Fondamentale et Appliquée
[3] Université Joseph Fourier-BP53,Institut de Biochimie et de Génétique Cellulaires du CNRS
来源
Journal of Bioenergetics and Biomembranes | 2005年 / 37卷
关键词
Mitochondria; volume; permeability transition pore; magnesium; cyclosporin; ubiquinone;
D O I
暂无
中图分类号
学科分类号
摘要
The permeability transition pore (PTP) is a Ca2+-sensitive mitochondrial inner membrane channel involved in several models of cell death. Because the matrix concentration of PTP regulatory factors depends on matrix volume, we have investigated the role of the mitochondrial volume in PTP regulation. By incubating rat liver mitochondria in media of different osmolarity, we found that the Ca2+ threshold required for PTP opening dramatically increased when mitochondrial volume decreased relative to the standard condition. This shrinkage-induced PTP inhibition was not related to the observed changes in protonmotive force, or pyridine nucleotide redox state and persisted when mitochondria were depleted of adenine nucleotides. On the other hand, mitochondrial volume did not affect PTP regulation when mitochondria were depleted of Mg2+. By studying the effects of Mg2+, cyclosporin A (CsA) and ubiquinone 0 (Ub0) on PTP regulation, we found that mitochondrial shrinkage increased the efficacy of Mg2+ and Ub0 at PTP inhibition, whereas it decreased that of CsA. The ability of mitochondrial volume to alter the activity of several PTP regulators represents a hitherto unrecognized characteristic of the pore that might lead to a new approach for its pharmacological modulation.
引用
收藏
页码:25 / 33
页数:8
相关论文
共 197 条
[31]  
Lartigue L.(1996)undefined J. Biol. Chem. 271 2185-2192
[32]  
Bauer M. K.(1995)undefined Biochem. J. 307 99-106
[33]  
Schubert A.(2002)undefined J. Bioenerg. Biomembr. 34 55-66
[34]  
Grimm S.(2000)undefined Hepatology 31 1141-1152
[35]  
Hanson G. T.(1999)undefined J. Biol. Chem. 274 31734-31739
[36]  
Remington S. J.(1999)undefined Biophys. J. 76 725-734
[37]  
Youle R. J.(2001)undefined J. Biol. Chem. 276 12030-12034
[38]  
Ichas F.(1976)undefined Biochemistry 15 2690-2697
[39]  
Desagher S.(1983)undefined Biochem. J. 214 395-404
[40]  
Martinou J. C.(1972)undefined J. Biol. Chem. 247 6970-6977