Let ?(n;3,5,…,2k+1) denote the class of non-bipartite graphs on n vertices having no odd cycle of length ≤2k+1. We prove that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} for every G∈?(n;3,5,…,2k+1) and characterize the extremal graphs. We also study the subclass ℋ(n;3,5,…,2k+1) consisting of the hamiltonian members of ?(n;3,5,…, 2k+1). For this subclass the above upper bound holds for odd n. For even n we establish the following sharp upper bound:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}