Edge Maximal Non-Bipartite Graphs Without Odd Cycles of Prescribed Lengths

被引:0
作者
Louis Caccetta
Rui-Zhong Jia
机构
[1] School of Mathematics and Statistics,
[2] Curtin University of Technology,undefined
[3] GPO Box U1987,undefined
[4] Perth,undefined
[5] 6845 Western Australia. e-mail: caccetta@cs.curtin.edu.au,undefined
来源
Graphs and Combinatorics | 2002年 / 18卷
关键词
Extremal Graph; Prescribe Length;
D O I
暂无
中图分类号
学科分类号
摘要
 Let ?(n;3,5,…,2k+1) denote the class of non-bipartite graphs on n vertices having no odd cycle of length ≤2k+1. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} for every G∈?(n;3,5,…,2k+1) and characterize the extremal graphs. We also study the subclass ℋ(n;3,5,…,2k+1) consisting of the hamiltonian members of ?(n;3,5,…, 2k+1). For this subclass the above upper bound holds for odd n. For even n we establish the following sharp upper bound:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}
引用
收藏
页码:75 / 92
页数:17
相关论文
empty
未找到相关数据