On the Bohr Radius for Two Classes of Holomorphic Functions

被引:0
|
作者
L. Aizenberg
A. Vidras
机构
[1] Bar-Ilan University,
[2] University of Cyprus,undefined
来源
Siberian Mathematical Journal | 2004年 / 45卷
关键词
Bohr radius; hypercone;
D O I
暂无
中图分类号
学科分类号
摘要
Using some multidimensional analogs of the inequalities of E. Landau and F. Wiener for the Taylor coefficients of special classes of holomorphic functions on Reinhardt domains we obtain some estimates for the Bohr radius.
引用
收藏
页码:606 / 617
页数:11
相关论文
共 50 条
  • [1] On the Bohr radius for two classes of holomorphic functions
    Aizenberg, L
    Vidras, A
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (04) : 606 - 617
  • [2] Bohr Radius for Classes of Analytic Functions
    Ali R.M.
    Jain N.K.
    Ravichandran V.
    Results in Mathematics, 2019, 74 (4)
  • [3] Bohr radius and its asymptotic value for holomorphic functions in higher dimensions
    Bhowmik, Bappaditya
    Das, Nilanjan
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (07) : 911 - 918
  • [4] Bohr radius for certain classes of starlike and convex univalent functions
    Allu, Vasudevarao
    Halder, Himadri
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [5] The p-Bohr radius for vector-valued holomorphic and pluriharmonic functions
    Das, Nilanjan
    FORUM MATHEMATICUM, 2024, 36 (03) : 765 - 782
  • [6] Bohr Radius for Some Classes of Harmonic Mappings
    K. Gangania
    S. Sivaprasad Kumar
    Iranian Journal of Science and Technology, Transactions A: Science, 2022, 46 : 883 - 890
  • [7] Bohr Radius for Some Classes of Harmonic Mappings
    Gangania, K.
    Kumar, S. Sivaprasad
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (03): : 883 - 890
  • [8] Bohr Radius Problems for Some Classes of Analytic Functions Using Quantum Calculus Approach
    Ahuja, Om
    Anand, Swati
    Jain, Naveen Kumar
    MATHEMATICS, 2020, 8 (04)
  • [9] Two Generalizations of Bohr Radius
    Chengpeng Li
    Mingxin Chen
    Jianfei Wang
    Acta Mathematica Scientia, 2023, 43 : 583 - 596
  • [10] Two Generalizations of Bohr Radius
    Li, Chengpeng
    Chen, Mingxin
    Wang, Jianfei
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 583 - 596