Convergence theorems for continuous descent methods

被引:0
作者
Sergiu Aizicovici
Simeon Reich
Alexander J. Zaslavski
机构
[1] Ohio University,Department of Mathematics
[2] The Technion-Israel Institute of Technology,Department of Mathematics
来源
Journal of Evolution Equations | 2004年 / 4卷
关键词
37L99; 47J35; 49M99; 54E35; 54E50; 54E52; 90C25; Complete metric space; descent method; Lipschitzian function; porous set; regular vector field;
D O I
暂无
中图分类号
学科分类号
摘要
We examine continuous descent methods for the minimization of Lipschitzian functions defined on a general Banach space. We establish several convergence theorems for those methods which are generated by regular vector fields. Since the complement of the set of regular vector fields is σ-porous, we conclude that our results apply to most vector fields in the sense of Baire’s categories.
引用
收藏
页码:139 / 156
页数:17
相关论文
共 42 条
  • [31] WEAK AND STRONG CONVERGENCE THEOREMS FOR INEXACT ORBITS OF UNIFORMLY LIPSCHITZIAN MAPPINGS
    Pustylnik, Evgeniy
    Reich, Simeon
    Zaslavski, Alexander J.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2009, 10 (03) : 359 - 367
  • [32] Convergence Rate of Descent Method with New Inexact Line-Search on Riemannian Manifolds
    Li, Xiao-bo
    Huang, Nan-jing
    Ansari, Qamrul Hasan
    Yao, Jen-Chih
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 180 (03) : 830 - 854
  • [33] Convergence Rate of Descent Method with New Inexact Line-Search on Riemannian Manifolds
    Xiao-bo Li
    Nan-jing Huang
    Qamrul Hasan Ansari
    Jen-Chih Yao
    Journal of Optimization Theory and Applications, 2019, 180 : 830 - 854
  • [34] UNIFYING ABSTRACT INEXACT CONVERGENCE THEOREMS AND BLOCK COORDINATE VARIABLE METRIC IPIANO
    Ochs, Peter
    SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 541 - 570
  • [35] Convergence of Inexact Orbits of Continuous Mappings in Complete Metric Spaces
    Reich, Simeon
    Zaslavski, Alexander J.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS IV, PT 1: FUNCTION THEORY AND OPTIMIZATION, 2011, 553 : 259 - 265
  • [37] Numerical Simulations for Hybrid Electromagnetism-Like Mechanism Optimization Algorithms with Descent Methods
    Miyajima, Hirofumi
    Shigei, Noritaka
    Taketatu, Hiroki
    Miyajima, Hiromi
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 2, 2015, : 293 - 306
  • [38] GLOBAL CONVERGENCE RATE OF PROXIMAL INCREMENTAL AGGREGATED GRADIENT METHODS
    Vanli, N. D.
    Gurbuzbalaban, M.
    Ozdaglar, A.
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1282 - 1300
  • [39] A UNIFIED CONVERGENCE ANALYSIS OF BLOCK SUCCESSIVE MINIMIZATION METHODS FOR NONSMOOTH OPTIMIZATION
    Razaviyayn, Meisam
    Hong, Mingyi
    Luo, Zhi-Quan
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) : 1126 - 1153
  • [40] Global convergence of Riemannian line search methods with a Zhang-Hager-type condition
    Oviedo, Harry
    NUMERICAL ALGORITHMS, 2022, 91 (03) : 1183 - 1203