Some Statistics on Generalized Motzkin Paths with Vertical Steps

被引:0
|
作者
Yidong Sun
Di Zhao
Weichen Wang
Wenle Shi
机构
[1] Dalian Maritime University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Dyck path; G-Motzkin path; Catalan number; Riordan array; 05A15; 05A05; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from (0, 0) to (n, 0) in the first quadrant of the XY-plane that consist of up steps u=(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}=(1, 1)$$\end{document}, down steps d=(1,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{d}}=(1, -1)$$\end{document}, horizontal steps h=(1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{h}}=(1, 0)$$\end{document} and vertical steps v=(0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{v}}=(0, -1)$$\end{document}. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, and to enumerate the statistics “number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps” at given level in G-Motzkin paths for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z1z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2$$\end{document}-steps” in G-Motzkin paths for z1,z2∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1, {\textbf{z}}_2\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, the exact counting formulas except for z1z2=dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2={\textbf{dd}}$$\end{document} are obtained by the Lagrange inversion formula and their generating functions.
引用
收藏
相关论文
共 38 条
  • [21] A Chung-Feller Property of the Motzkin Paths of Higher Order
    Yang, Lin
    Yang, Sheng-Liang
    GRAPHS AND COMBINATORICS, 2025, 41 (02)
  • [22] Several explicit and recursive formulas for generalized Motzkin numbers
    Qi, Feng
    Guo, Bai-Ni
    AIMS MATHEMATICS, 2020, 5 (02): : 1333 - 1345
  • [23] A note on 2-distant noncrossing partitions and weighted Motzkin paths
    Gessel, Ira M.
    Kim, Jang Soo
    DISCRETE MATHEMATICS, 2010, 310 (23) : 3421 - 3425
  • [24] On divisibility properties of some differences of Motzkin numbers
    Lengyel, Tamas
    ANNALES MATHEMATICAE ET INFORMATICAE, 2013, 41 : 121 - 136
  • [25] Some identities on the Catalan, Motzkin and Schroder numbers
    Deng, Eva Y. P.
    Yan, Wei-Jun
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (14) : 2781 - 2789
  • [26] On Motzkin-Schroder Paths, Riordan Arrays, and Somos-4 Sequences
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (04)
  • [27] A Chung-Feller property for the generalized Schroder paths
    Yang, Lin
    Yang, Sheng-Liang
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [28] ON THE NUMBER OF GENERALIZED DYCK PATHS
    Imaoka, Mitsunori
    Takata, Isao
    Fujiwara, Yu
    ARS COMBINATORIA, 2010, 97A : 269 - 278
  • [29] Enumeration of Lattice paths with infinite types of steps and the Chung-Feller property
    Yang, Lin
    Yang, Sheng-Liang
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [30] Determinants of Some Hessenberg-Toeplitz Matrices with Motzkin Number Entries
    Goy, Taras
    Shattuck, Mark
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (03)