Weighted Strichartz Estimates for the Radial Perturbed Schrödinger Equation on the Hyperbolic Space

被引:0
作者
Vittoria Pierfelice
机构
[1] University of Pisa,Department of Mathematics
来源
manuscripta mathematica | 2006年 / 120卷
关键词
Cauchy Problem; Global Existence; Hyperbolic Space; Radial Function; Dispersive Property;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the radial Schrödinger equation perturbed with a rough time dependent potential on the hyperbolic space. It is natural to expect that the curvature of the manifold has some influence on the dispersive properties, indeed we obtain the weighted Strichartz estimates for the perturbed Cauchy problem. We shall notice that our weighted Strichartz estimates makes possible to treat the nonlinearity of the form g(Ω, u) which are unbounded as |Ω| → ∞.
引用
收藏
页码:377 / 389
页数:12
相关论文
共 11 条
  • [1] Beals M.(1994)Optimal Comm. Partial Diff. Equ. 8 1319-1369
  • [2] Burq N.(2004) decay for solutions to the wave equation with a potential Am. J. Math. 126 569-605
  • [3] Gérard P.(1995)Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds J. Funct. Anal. 133 50-68
  • [4] Tzvetkov N.(1998)Generalized Strichartz inequalities for the wave equation Am. J. Math. 120 955-980
  • [5] Ginibre J.(1982)Endpoint Strichartz estimates Bull. AMS 7 447-526
  • [6] Velo G.(2002)Schrödinger semigroups Comm. Partial Differ. Equ. 27 1337-1372
  • [7] Keel M.(undefined)Strichartz estimates for a Schrodinger operator with nonsmooth coefficients undefined undefined undefined-undefined
  • [8] Tao T.(undefined)undefined undefined undefined undefined-undefined
  • [9] Simon B.(undefined)undefined undefined undefined undefined-undefined
  • [10] Tataru D.(undefined)undefined undefined undefined undefined-undefined