Linear codes close to the Griesmer bound and the related geometric structures

被引:0
作者
Assia Rousseva
Ivan Landjev
机构
[1] Sofia University,Institute of Mathematics and Informatics
[2] New Bulgarian University,undefined
[3] Bulgarian Academy of Sciences,undefined
来源
Designs, Codes and Cryptography | 2019年 / 87卷
关键词
Griesmer bound; Optimal linear codes; Arcs; Minihypers; 94B65; 51E21; 51E22; 94B05; 94B27; 51E15; 51E23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the behavior of the function tq(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)$$\end{document} defined as the maximal deviation from the Griesmer bound of the optimal length of a linear code with a fixed dimension k: tq(k)=maxd(nq(k,d)-gq(k,d)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} t_q(k)=\max _d(n_q(k,d)-g_q(k,d)), \end{aligned}$$\end{document}where the maximum is taken over all minimum distances d. Here nq(k,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_q(k,d)$$\end{document} is the shortest length of a q-ary linear code of dimension k and minimum distance d, gq(k,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_q(k,d)$$\end{document} is the Griesmer bound for a code of dimension k and minimum distance d. We give two equivalent geometric versions of this problem in terms of arcs and minihypers. We prove that tq(k)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\rightarrow \infty $$\end{document} when k→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\rightarrow \infty $$\end{document} which implies that the problem is non-trivial. We prove upper bounds on the function tq(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)$$\end{document}. For codes of even dimension k we show that tq(k)≤2(qk/2-1)/(q-1)-(k+q-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\le 2(q^{k/2}-1)/(q-1)-(k+q-1)$$\end{document} which implies that tq(k)∈O(qk/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(k)\in O(q^{k/2})$$\end{document} for all k. For three-dimensional codes and q even we prove the stronger estimate tq(3)≤logq-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(3)\le \log q-1$$\end{document}, as well as tq(3)≤q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_q(3)\le \sqrt{q}-1$$\end{document} for the case q square.
引用
收藏
页码:841 / 854
页数:13
相关论文
共 21 条
  • [1] Ball S(2001)On Des. Codes Cryptogr. 24 205-224
  • [2] Hill R(1974)-arcs in the projective plane Probl. Inf. Transm. 10 211-217
  • [3] Landjev I(1998)Construction of a class of linear binary codes achieving the Varshamov–Griesmer bound Electron. J. Comb. 5 37-542
  • [4] Ward HN(1960)Codes and projective multisets IBM J. Res. Dev. 4 532-206
  • [5] Belov BI(2011)A bound for error-correcting codes Serdica J. Comput. 5 199-297
  • [6] Logachev VN(2004)Note on an improvement of the Griesmer bound for Des. Codes Cryptogr. 274 289-2703
  • [7] Sandimirov VP(2007)-ary linear codes Discret. Math. 307 2695-1131
  • [8] Dodunekov S(2012)On codes meeeting the Griesmer bound J. Comb. Theory Ser. A 119 1123-7
  • [9] Simonis J(1996)Parameters for which the Griesmer bound is not sharp Geom. Dedicata 60 1-87
  • [10] Griesmer JH(1997)A study of Des. Codes Cryptogr. 12 83-179