The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system sizes from N = 5 to N = 120 spins, considering particularly the finite-size scaling behavior at the exactly known glass transition temperature Tc. It is shown that for p = 3 the moments q(k) of the spin-glass order parameter satisfy a simple scaling behavior, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$q^{(k)} \alpha N^{--k/3} \tilde f_k \{ N^{1/3} (1--T/T_c )\} ,{\text{ }}k = 1,2,3,...,\tilde f_k $$
\end{document} being the appropriate scaling function and T the temperature. Also the specific heat maxima have a similar behavior, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$c_V^{\max } \alpha {\text{ }}const--N^{--1/3} $$
\end{document}, while moments of the magnetization scale as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$m^{(k)} \alpha N^{--k/2} $$
\end{document}. The approach of the positions Tmax of these specific heat maxima to Tc as N → ∞ is nonmonotonic. For p = 6 the results are compatible with a first-order transition, q(k) → (qjump)k as N → ∞ but since the order parameter qjump at Tc is rather small, a behavior q(k) ∝ N-k/3 as N → ∞ also is compatible with the data. Thus no firm conclusions on the finite-size behavior of the order parameter can be drawn. The specific heat maxima cVmax behave qualitatively in the same way as for p = 3, consistent with the prediction that there is no latent heat. A speculative phenomenological discussion of finite-size scaling for such transitions is given. For small N (N ≤15 for p = 3, N ≤ 12 for p = 6) the Monte Carlo data are compared to exact partition function calculations, and excellent agreement is found. We also discuss ratios \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$R_x \equiv [(\langle X\rangle _T - [\langle X\rangle _T ]_{{\text{av}}} )^2 ]_{{\text{av}}} /[\langle X\rangle _T ]_{{\text{av}}}^2 $$
\end{document}, for various quantities X, to test the possible lack of self-averaging at Tc.