Finite-Size Scaling in the p-State Mean-Field Potts Glass: A Monte Carlo Investigation

被引:0
|
作者
O. Dillmann
W. Janke
K. Binder
机构
[1] Johannes Gutenberg-Universität Mainz,Institut für Physik
[2] Universität Leipzig,Institut für Theoretische Physik
来源
关键词
Mean-field Potts glass; orientational glass; infinite range interactions; Monte Carlo simulations; finite-size scaling; self-averaging; first-order transition without latent heat;
D O I
暂无
中图分类号
学科分类号
摘要
The p-state mean-field Potts glass with bimodal bond distribution (±J) is studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system sizes from N = 5 to N = 120 spins, considering particularly the finite-size scaling behavior at the exactly known glass transition temperature Tc. It is shown that for p = 3 the moments q(k) of the spin-glass order parameter satisfy a simple scaling behavior, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q^{(k)} \alpha N^{--k/3} \tilde f_k \{ N^{1/3} (1--T/T_c )\} ,{\text{ }}k = 1,2,3,...,\tilde f_k $$ \end{document} being the appropriate scaling function and T the temperature. Also the specific heat maxima have a similar behavior, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$c_V^{\max } \alpha {\text{ }}const--N^{--1/3} $$ \end{document}, while moments of the magnetization scale as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$m^{(k)} \alpha N^{--k/2} $$ \end{document}. The approach of the positions Tmax of these specific heat maxima to Tc as N → ∞ is nonmonotonic. For p = 6 the results are compatible with a first-order transition, q(k) → (qjump)k as N → ∞ but since the order parameter qjump at Tc is rather small, a behavior q(k) ∝ N-k/3 as N → ∞ also is compatible with the data. Thus no firm conclusions on the finite-size behavior of the order parameter can be drawn. The specific heat maxima cVmax behave qualitatively in the same way as for p = 3, consistent with the prediction that there is no latent heat. A speculative phenomenological discussion of finite-size scaling for such transitions is given. For small N (N ≤15 for p = 3, N ≤ 12 for p = 6) the Monte Carlo data are compared to exact partition function calculations, and excellent agreement is found. We also discuss ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R_x \equiv [(\langle X\rangle _T - [\langle X\rangle _T ]_{{\text{av}}} )^2 ]_{{\text{av}}} /[\langle X\rangle _T ]_{{\text{av}}}^2 $$ \end{document}, for various quantities X, to test the possible lack of self-averaging at Tc.
引用
收藏
页码:57 / 100
页数:43
相关论文
共 50 条
  • [1] Finite-size scaling in the p-state mean-field Potts glass: A Monte Carlo investigation
    Dillmann, O
    Janke, W
    Binder, K
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) : 57 - 100
  • [2] Finite-size scaling in the p-state mean-field Potts glass: Exact statistical mechanics for small samples
    Peters, BO
    Dunweg, B
    Binder, K
    deMeo, MD
    Vollmayr, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13): : 3503 - 3519
  • [3] Finite-size scaling at the dynamical transition of the mean-field 10-state Potts glass
    Brangian, C
    Kob, W
    Binder, K
    EUROPHYSICS LETTERS, 2001, 53 (06): : 756 - 761
  • [4] Ergodicity breaking in a mean field Potts glass: A Monte Carlo investigation
    Brangian, C
    Kob, W
    Binder, K
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 154 - 157
  • [5] Statics and dynamics of the ten-state mean-field Potts glass model: a Monte Carlo study
    Brangian, C
    Kob, W
    Binder, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (02): : 191 - 216
  • [6] Equilibrium state of the mean-field Potts glass
    Janis, V.
    Klic, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (02)
  • [7] Finite-size critical scaling in Ising spin glasses in the mean-field regime
    Aspelmeier, T.
    Katzgraber, Helmut G.
    Larson, Derek
    Moore, M. A.
    Wittmann, Matthew
    Yeo, Joonhyun
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [8] MEAN FIELD AND MONTE-CARLO ANALYSIS OF THE P-STATE CHIRAL CLOCK MODEL
    MCCULLOUGH, WS
    SCOTT, HL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20): : 4463 - 4476
  • [9] NEW METHOD TO STUDY CRITICAL PHENOMENA - MEAN-FIELD FINITE-SIZE SCALING THEORY
    SUZUKI, M
    KATORI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1986, 55 (01) : 1 - 4
  • [10] DERIVATION OF FINITE-SIZE SCALING FOR MEAN-FIELD MODELS FROM THE BURGERS-EQUATION
    BRANKOV, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23): : 5647 - 5654