A Criterion for Uniqueness of Lagrangian Trajectories for Weak Solutions of the 3D Navier-Stokes Equations

被引:0
作者
James C. Robinson
Witold Sadowski
机构
[1] University of Warwick,Mathematics Institute
[2] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
来源
Communications in Mathematical Physics | 2009年 / 290卷
关键词
Weak Solution; Particle Trajectory; Partial Regularity; Suitable Weak Solution; Lagrangian Trajectory;
D O I
暂无
中图分类号
学科分类号
摘要
Foias, Guillopé, & Temam showed in 1985 that for a given weak solution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u\in L^\infty(0,T;L^2)\cap L^2(0,T;H^1)}$$\end{document} of the three-dimensional Navier-Stokes equations on a domain Ω, one can define a ‘trajectory mapping’ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi:\Omega\times[0,T]\rightarrow\Omega}$$\end{document} that gives a consistent choice of trajectory through each initial condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in\Omega,\,\xi_a(t)=\Phi(a,t)}$$\end{document} , and that respects the volume-preserving property one would expect for smooth flows. The uniqueness of this mapping is guaranteed by the theory of renormalised solutions of non-smooth ODEs due to DiPerna & Lions.
引用
收藏
页码:15 / 22
页数:7
相关论文
共 33 条
[1]  
Aizenman M.(1978)A sufficient condition for the avoidance of sets by measure preserving flows in Duke Math. J. 45 809-812
[2]  
Ambrosio L.(2004)Transport equation and Cauchy problem for Invent. Math. 158 227-260
[3]  
Caffarelli L.(1982) vector fields Comm. Pure Appl. Math. 35 771-831
[4]  
Kohn R.(1995)Partial regularity of suitable weak solutions of the Navier-Stokes equations J. Diff. Eq. 121 314-328
[5]  
Nirenberg L.(2005)Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes J. Diff. Eq. 219 183-201
[6]  
Chemin J.Y.(1990)Flows associated with irregular Commun. Math. Phys. 129 241-266
[7]  
Lerner N.(2009) –vector fields Nonlinearity 22 735-746
[8]  
Cipriano F.(1989)Navier-Stokes equations and area of interfaces Invent. math. 98 511-547
[9]  
Cruzeiro A.B.(1981)A simple proof of uniqueness of the particle trajectories for solutions of the Navier-Stokes equations Comm. Part. Diff. Eq. 6 329-359
[10]  
Constantin P.(1985)Ordinary differential equations, transport theory and Sobolev spaces J. Diff. Eq. 57 440-449