On the spectral theory of linear differential-algebraic equations with periodic coefficients

被引:0
|
作者
Bader Alshammari
Aaron Welters
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
来源
关键词
Linear differential-algebraic equations; Periodic coefficients; Operator theory; Spectral theory; Electromagnetics; 1D photonic crystals; 34A09; 34L05; 47B25; 47A75; 78M22; 46N20; 47N20; 47B38; 47B93; 47N50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the spectral theory of linear differential-algebraic equations (DAEs) for periodic DAEs in canonical form, i.e., Jdfdt+Hf=λWf,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} J \frac{df}{dt}+Hf=\lambda Wf, \end{aligned}$$\end{document}where J is a constant skew-Hermitian n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} matrix that is not invertible, both H=H(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=H(t)$$\end{document} and W=W(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W=W(t)$$\end{document} are d-periodic Hermitian n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document}-matrices with Lebesgue measurable functions as entries, and W(t) is positive semidefinite and invertible for a.e. t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}}$$\end{document} (i.e., Lebesgue almost everywhere). Under some additional hypotheses on H and W, called the local index-1 hypotheses, we study the maximal and the minimal operators L and L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document}, respectively, associated with the differential-algebraic operator L=W-1(Jddt+H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}=W^{-1}(J\frac{d}{dt}+H)$$\end{document}, both treated as an unbounded operators in a Hilbert space L2(R;W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}; W)$$\end{document} of weighted square-integrable vector-valued functions. We prove the following: (i) the minimal operator L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document} is a densely defined and closable operator; (ii) the maximal operator L is the closure of L0′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_0'$$\end{document}; (iii) L is a self-adjoint operator on L2(R;W)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {R}}; W)$$\end{document} with no eigenvalues of finite multiplicity, but may have eigenvalues of infinite multiplicity. Finally, we show that for 1D photonic crystals with passive lossless media, Maxwell’s equations for the electromagnetic fields become, under separation of variables, periodic DAEs in canonical form satisfying our hypotheses so that our spectral theory applies to them.
引用
收藏
相关论文
共 50 条
  • [21] A new software package for linear differential-algebraic equations
    Kunkel, P
    Mehrmann, V
    Rath, W
    Weickert, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01): : 115 - 138
  • [22] Perturbation index of linear partial differential-algebraic equations
    Rang, J
    Angermann, L
    APPLIED NUMERICAL MATHEMATICS, 2005, 53 (2-4) : 437 - 456
  • [23] On parameter and state estimation for linear differential-algebraic equations
    Gerdin, Markus
    Schoen, Thomas B.
    Glad, Torkel
    Gustafsson, Fredrik
    Ljung, Lennart
    AUTOMATICA, 2007, 43 (03) : 416 - 425
  • [24] The Index and Split Forms of Linear Differential-Algebraic Equations
    Bulatov, M., V
    Chistyakov, V. F.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2019, 28 : 21 - 35
  • [25] A modeling and filtering framework for linear differential-algebraic equations
    Schön, T
    Gerdin, M
    Glad, T
    Gustafsson, F
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 892 - 897
  • [26] Characterization of classes of singular linear differential-algebraic equations
    Kunkel, P
    Mehrmann, V
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 13 : 359 - 386
  • [27] Regularization of Quasi-Linear Differential-Algebraic Equations
    Steinbrecher, Andreas
    IFAC PAPERSONLINE, 2015, 48 (01): : 300 - 305
  • [28] ANALYSIS AND REFORMULATION OF LINEAR DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS
    Ha, Phi
    Mehrmann, Volker
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2012, 23 : 703 - 730
  • [29] Stability of an Interval Family of Differential-Algebraic Equations with Variable Coefficients
    Shcheglova A.A.
    Kononov A.D.
    Journal of Mathematical Sciences, 2019, 239 (2) : 214 - 231
  • [30] Acceleration of implicit schemes for linear differential-algebraic equations
    Ali, Mouhamad Al Sayed
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 229 - 232